

OneClick

Authoring Guide

WestCode Software, Inc. • http://www.westcodesoft.com
619–487–9200 • fax 619–487–9255

WestCode
S O F T W A R E

The OneClick Product Team

Alan Bird
Leonard Rosenthol
Rob Renstrom
John Oberrick
Jeff Jungblut
Mark Brooks

Manual and Layout

Jeff Jungblut

Cover and Package Design

Steve Sharp, Sharp Advertising & Design

Copyright



 1995–99 Alan Bird and
WestCode Software, Inc.
All rights reserved.
Version 2.0 by Leonard Rosenthol

This manual and the software described in it are
copyrighted, with all rights reserved. Under the
copyright laws, this manual or the software may not be
copied, in whole or part, without written consent of
WestCode Software, except in the normal use of the
software or to make a backup copy of the software. This
exception does not allow copies to be made for others.
Under the law, copying includes translation into
another language or format.

Trademarks

OneClick, ShortCut Software, and the WestCode logo
are trademarks of WestCode Software, Inc.

Macintosh, Mac, the Mac OS logo, and Finder are
trademarks and registered trademarks of Apple
Computer, Inc.

Apple Installer, © 1987–1994 Apple Computer, Inc. All
rights reserved.

All other brand and product names are trademarks of
their respective owners.

Third Printing, November 1999
Printed in the United States of America.

Disclaimer of Warranty on Software.

You
expressly acknowledge and agree that use of the
software is at your sole risk. The Software and
related documentation are provided “AS IS” and
without warranty of any kind and WestCode and
WestCode’s Licensor(s) expressly disclaim all
warranties, express or implied, including, but not
limited to, the implied warranties of
merchantability and fitness for a particular
purpose. WestCode does not warrant that the
functions contained in the Software will meet your
requirements, or that the operation of the
Software will be uninterrupted or error-free, or
that defects in the Software will be corrected.
Furthermore, WestCode does not warrant or make
any representations regarding the use or the
results of the use of the Software or related
documentation in terms of their correctness,
accuracy, reliability, or otherwise. No oral or
written information or advice given by WestCode
or a WestCode authorized representative shall
create a warranty or in any way increase the scope
of this warranty. Should the Software prove
defective, you (and not WestCode or a WestCode
authorized representative) assume the entire cost
of all necessary servicing, repair or correction.
Some states do not allow the exclusion of implied
warranties, so the above exclusion may not apply
to you.

Limitation of Liability.

Under no circumstances
including negligence shall WestCode be liable for
any incidental, special or consequential damages
that result from the use or inability to use the
Software or related documentation, even if
WestCode or a WestCode authorized
representative has been advised of the possibility
of such damages. Some states do not allow the
limitation or exclusion of liability for incidental or
consequential damages so the above limitation or
exclusion may not apply to you.

In no event shall WestCode’s total liability to you
for all damages, losses, and causes of action
(whether in contract, tort (including negligence) or
otherwise) exceed the amount paid by you for the
Software.

ONECLICK AUTHORING GUIDE

■

CONTENTS

Contents

1 Introduction .. 17
About this manual... 17
Why script?.. 18
Opening the OneClick Editor... 18

A quick tour of the OneClick Editor 19

2 Using the Button Library 21
Choosing a library of buttons ... 22
Copying buttons and scripts from the library to a palette ... 22
Searching for specific buttons... 23
Creating a library and adding buttons 24
Managing library files .. 26

3 Using the Palette Editor ... 29
Creating a new palette .. 30
Selecting a palette to edit.. 31
Changing a palette’s name.. 32
Changing a palette’s background ... 32
Changing a palette’s size... 35
Changing a palette’s grid settings and button spacing......... 36
Turning a palette’s title bar on or off 37
Keeping a palette from appearing in the OneClick menu.... 37
Changing the default settings for new palettes 38
Deleting a palette .. 38
Managing palette files ... 39

4 Using the Button Editor ... 45
Creating a new button .. 46
Selecting buttons to edit ... 46
Resizing selected buttons.. 47
Moving and aligning buttons .. 48
Editing and formatting a button’s text label 48
Adding a keyboard shortcut .. 49
■ iii

ONECLICK AUTHORING GUIDE

■

CONTENTS

iv

Adding a Balloon Help message.. 51
Choosing which icon appears on a button 51
Changing a button’s name... 52
Changing other visual properties of buttons 52
Changing the default settings for new buttons 54
Duplicating buttons... 55
Deleting buttons from a palette .. 55

5 Using the Script Editor ... 57
About the Script Editor ... 57
Accessing the Script Editor.. 58
Recording a script ... 59

Tips for recording a script ... 61
Typing and editing in the script pane ... 62

Jumping directly to a line in a script 63
Checking a script for errors... 64
Saving changes to a script.. 65
Reverting to the last saved script ... 66

Running a script .. 66
Printing scripts .. 67
Getting help for script keywords .. 67

Using the Keyword List .. 67
Using Detailed Help .. 68

Inserting parameters for script keywords 70
Button.. 71
Click ... 71
Cursor .. 72
Date.. 72
File ... 73
File Type... 74
Sound... 74
Time ... 75
Window.. 75

Script compiler error messages .. 76

6 Using the Icon Editor and Icon Search 79
Icon Editor tools.. 80
■

ONECLICK AUTHORING GUIDE

■

CONTENTS

Resizing the icon ... 81
Pasting an icon or picture from the clipboard...................... 82
Designing both color and black-and-white icons 82
Making parts of the icon transparent.................................... 83
Saving changes to an icon ... 84

Using Icon Search ... 84

7 Using EasyScript ... 87
Overview... 87

About scripting.. 87
How scripting differs from programming............................. 88

Parts of the EasyScript language ... 89
Statements and keywords ... 90
Values... 90
Commands .. 91
Functions... 93
Comments ... 93
Variables .. 94
Expressions and operators.. 99
Control statements (branching and looping) 102
Objects .. 109
Handlers .. 118

Common scripting techniques ... 119
Finding the checked item in a menu 120
Manipulating lists .. 120
Creating pop-up menu buttons .. 124
Getting input while a script runs .. 125
Accessing the Clipboard.. 125
Creating tear-off palettes ... 127
Calling scripts as subroutines ... 128
Calling scripts as functions ... 128
Getting a list of the installed fonts or sounds..................... 131
Using Drag and Drop .. 131
Determining how long the mouse is held down................ 135
Making a script run when an application starts.................. 136
Scheduling a script to run periodically............................... 136

Testing and debugging a script ... 139
■ v

ONECLICK AUTHORING GUIDE

■

CONTENTS

vi

Using message boxes to inspect variables 139
Using text buttons to monitor the values of variables 141
Using sounds to determine what’s being executed 142
Checking for run-time errors... 142

Specifications and limits ... 143
Memory usage.. 144

8 EasyScript Reference .. 145
Using the EasyScript Reference... 145

What’s new in OneClick 2.0 .. 145
Absolute function.. 149
Alias function... 150
AppleScript command... 150
AskButton function ... 152
AskFile function... 152
AskKey function... 153
AskList function... 154
AskNewFile function ... 155
AskShortcut function... 156
AskText function.. 156
ASResult system variable ... 157
Beep command ... 157
BeepLevel system variable... 158
Button object .. 158

.Border... 159

.Color ... 159

.Count .. 160

.Data... 160

.Delete.. 160

.Drag .. 161

.Exists ... 161

.Height ... 161

.Help .. 162

.Icon... 162

.IconAlign... 163

.Index... 163

.KeyShortCut.. 163
■

ONECLICK AUTHORING GUIDE

■

CONTENTS

.Left.. 164

.List .. 164

.Location.. 164

.Mode .. 165

.Name .. 165

.New .. 165

.Record .. 167

.Script .. 167

.Size ... 168

.Text ... 168

.TextAlign... 169

.TextColor .. 169

.TextFont.. 169

.TextSize... 170

.TextStyle ... 170

.Top.. 170

.Update .. 170

.Visible ... 170

.Width.. 170
Call command... 171
CallResult system variable .. 171
Char function.. 172
Click command... 172
Clipboard system variable .. 174
CloseResFile command... 175
CloseWindow command... 176
Code function... 176
ColorPicker function... 176
CommandKey system variable .. 177
ContextualMenu handler.. 178
ControlKey system variable .. 179
ConvertClip command ... 179
Cursor system variable.. 180
DateTime object .. 181

.DateSerial ... 182

.DateString... 182

.Day ... 184

.Hour ... 184
■ vii

ONECLICK AUTHORING GUIDE

■

CONTENTS

viii

.Minute... 184

.Month ... 184

.Second .. 184

.TimeSerial ... 184

.TimeString .. 185

.Weekday .. 186

.Year ... 186
Dial command... 186
DialogButton object .. 187

.Count .. 188

.Checked .. 188

.Enabled ... 188

.Exists ... 188

.Index... 189

.List... 189

.Name... 189
Dialogs system variable ... 190
DialogText system variable .. 190
Directory system variable.. 191
DragAndDrop handler .. 192
DragButton command .. 192
DrawButton handler ... 193
DrawIndicator command .. 194
Editor command ... 194
EditorFont system variable.. 195
EditorSize system variable... 195
Error system variable... 196
Exit command ... 198
False system variable ... 199
File object.. 199

.Append ... 199

.Busy .. 199

.Count .. 200

.CreationDate... 200

.Creator .. 200

.Delete.. 201

.Exists ... 201

.FileVersion... 201
■

ONECLICK AUTHORING GUIDE

■

CONTENTS

.Kind .. 202

.KindString .. 202

.List .. 203

.Locked .. 203

.ModificationDate.. 203

.Name .. 204

.NewFolder.. 205

.Original .. 205

.Size ... 205

.Text ... 205

.Visible ... 206
FileClose command .. 207
FileGetEOF function... 207
FileGetPos function .. 208
FileOpen function... 208
FileRead function.. 209
FileSetEOF command ... 210
FileSetPos command... 211
FileWrite command... 211
Find function .. 212
FindApp function.. 213
FinderAlias command... 213
FinderCopy command.. 214
FinderMove command.. 215
FindFolder function.. 216
FKey command ... 218
FontMenu function... 219
For, Next For, Exit For, End For commands 219
Gestalt function .. 220
GetDragAndDrop function ... 221
GetICHelpers function ... 222
GetICPref function.. 222
GetPalettes function ... 225
GetResources function ... 225
GetScrap function... 226
GetWindowText command ... 226
If, Else, Else If, End If commands ... 228
IgnoreClicks system variable .. 229
■ ix

ONECLICK AUTHORING GUIDE

■

CONTENTS

x

Implemented function .. 229
IsKeyDown system variable... 230
IsMouseDown system variable.. 230
KeyPress command ... 231
LaunchURL command ... 232
Length function... 232
ListCount function .. 232
ListDelete function.. 233
ListDelimiter system variable .. 234
ListFind function ... 235
ListInsert function ... 235
ListItems function ... 236
ListSort function.. 237
ListSum function ... 237
LoadExtensions command .. 237
Lower function.. 238
MakeNumber function .. 238
MakeText function ... 239
Menu object .. 240

.Count .. 241

.Checked .. 241

.Enabled ... 241

.Exists ... 242

.Height ... 242

.Index... 242

.List... 242

.Name... 243

.Update .. 243
MenuNumber function ... 244
Message command .. 244
MountVolume command... 245
MountVolumeIP command ... 247
MouseDown handler... 249
MouseUp handler.. 249
Notify command.. 250
OldDate function .. 250
OldDateString function... 251
OldListCount function .. 251
■

ONECLICK AUTHORING GUIDE

■

CONTENTS

OldListItems function... 251
OldTime function ... 252
OldTimeString function.. 252
OnlineHelp handler.. 253
Open command.. 253
OpenFileList function ... 254
OpenResFile function ... 254
OptionKey system variable ... 255
Palette object .. 256

.Color .. 256

.Count.. 256

.Delete ... 256

.Drag.. 256

.Exists .. 257

.Front ... 257

.Grow... 257

.Height... 258

.Index .. 258

.InMenu... 258

.IsGlobal .. 258

.Left.. 258

.List .. 259

.Location.. 259

.MainScreen... 259

.Name .. 259

.New .. 259

.PICT.. 260

.Size ... 261

.TitleBar ... 261

.Top.. 262

.Update .. 262

.Visible ... 262

.Width.. 263
PaletteMenu command... 263
Pause command.. 263
PopupFiles function.. 264
PopupFont function.. 265
PopupMenu function.. 265
■ xi

ONECLICK AUTHORING GUIDE

■

CONTENTS

xii

PopupMenuFont system variable .. 267
PopupMenuSize system variable ... 267
PopupPalette command .. 267
PrintText command ... 268
Process object.. 269

.Count .. 270

.Creator .. 270

.Exists ... 270

.Folder.. 271

.Free ... 271

.Front ... 271

.Index... 271

.Kind .. 272

.List... 272

.Name... 272

.Quit ... 272

.Selection ... 273

.SendAE.. 273

.Size.. 274

.Visible.. 274

.Window... 275
Proper function ... 275
QuicKey command.. 276
QuoteText function.. 276
Random function .. 277
Repeat, Next Repeat, Exit Repeat, End Repeat commands......... 277
Replace function ... 278
Return function ... 278
Schedule command... 279
Scheduled handler .. 281
ScheduleType system variable ... 282
Screen object... 283

.Color ... 283

.Count .. 283

.CursorScreen .. 283

.CursorX... 283

.CursorY... 284

.Depth .. 284
■

ONECLICK AUTHORING GUIDE

■

CONTENTS

.Exists .. 284

.Height... 284

.Left.. 284

.Maximum.. 285

.Top.. 285

.Update .. 286

.Width.. 286
ScriptInterrupts system variable... 286
Scroll command.. 286
SelectButton command .. 287
SelectMenu command .. 288
SelectPopUp command... 290
Set command.. 290
SetICPref command .. 291
SetScrap command ... 291
ShiftKey system variable.. 292
Sound command .. 292
SoundLevel system variable.. 293
Speak command ... 293
Startup handler... 294
SubString function.. 294
SystemFolder system variable ... 295
SysVersion system variable.. 295
Tab function.. 295
TextWidth function ... 296
Ticks system variable .. 296
Trim function .. 297
True system variable ... 297
TruncText function.. 297
Type command ... 298
Upper function ... 299
UserHandler1 … UserHandler5 handlers 299
Variable command .. 300
Version system variable... 301
Volume object ... 301

.Count.. 301

.Eject.. 301

.Exists .. 301
■ xiii

ONECLICK AUTHORING GUIDE

■

CONTENTS

xiv

.Free ... 302

.Index... 302

.List... 302

.Name... 302

.Size.. 302

.Unmount... 303
Wait command... 303
WeekdayGregorian function.. 304
While, Next While, Exit While, End While commands................ 304
Window object .. 305

.Collapsed .. 306

.Count .. 306

.Exists ... 306

.Front ... 306

.Height ... 307

.Index... 307

.Kind .. 307

.Left .. 308

.List... 309

.Location .. 309

.Name... 309

.Size.. 309

.TitleBar ... 310

.Top .. 310

.Update .. 310

.Visible.. 310

.Width .. 311

.Zoom... 311
With command.. 312

A EasyScript Summary .. 313

B Integration with AppleScript............................... 321
Why use AppleScript? .. 321
Integrating OneClick and AppleScript .. 322

Launching compiled AppleScript scripts............................. 323
Embedding AppleScript code in an EasyScript script 323
■

ONECLICK AUTHORING GUIDE

■

CONTENTS

Accessing the AppleScript result variable............................ 324
Accessing OneClick variables from an AppleScript script... 324
Calling a OneClick script from an AppleScript script 325
Determining if AppleScript is installed 326

AppleScript resources... 326
■ xv

ONECLICK AUTHORING GUIDE

■

CONTENTS

xv

i ■

Chapter 1

Introduction
This manual shows you how to create custom palettes using the OneClick Editor and
how to write and edit scripts using OneClick’s scripting language, EasyScript.

Before you start writing your own scripts, you should be familiar with how to use
basic OneClick features, such as the standard palettes listed in the OneClick menu. If
you haven’t already done so, read Chapter 3, “Getting Started with OneClick” in the
OneClick User’s Guide.

About this manual

This manual is divided into two parts. Chapters 2 through 6 cover how to create
palettes and buttons using the OneClick Editor. The remaining chapters cover
EasyScript, OneClick’s scripting language.

■ Chapter 2, “Using the Button Library,” shows you how to add pre-designed
buttons to a palette by selecting from a button library.

■ Chapter 3, “Using the Palette Editor,” shows you how to create, modify, import,
and export palettes.

■ Chapter 4, “Using the Button Editor,” shows you how to create and modify
buttons.

■ Chapter 5, “Using the Script Editor,” describes all the options available in the
Script Editor, including the script recorder, editor, compiler, and online help.

■ Chapter 6, “Using the Icon Editor and Icon Search,” shows you how to edit
button icons and grab icons from files.

■ Chapter 7, “Using EasyScript,” provides a more thorough introduction to the
EasyScript language. You’ll learn how to use commands, functions, variables,
objects, and other language elements to enhance your scripts.
■ 17

CHAPTER 1

■

INTRODUCTION

Why script?

18

å

■ Chapter 8, “EasyScript Reference,” contains detailed descriptions of all EasyScript
keywords. A section for each keyword describes how and when to use the
keyword, the keyword’s syntax and parameters, and sample scripts that use the
keyword.

■ Appendix A, “EasyScript Summary,” contains a brief summary of all the EasyScript
keywords. Use this chapter as a quick reference when you want to find out what a
keyword does.

■ Appendix B, “Integration with AppleScript,” shows how you can integrate
AppleScript scripts with OneClick scripts and provides pointers to other sources
of information for AppleScript users.

Why script?

It’s not necessary to learn how to write scripts to make use of OneClick. The Make a
Shortcut commands and the standard palettes may already meet your needs.
However, if you’re an advanced user, a system integrator, or simply curious, we
recommend that you read this manual. You’ll learn how creating your own palettes
and scripts can extend OneClick’s capabilities for virtually any need.

Technical information for Macintosh developers

The OneClick manuals do not include technical information regarding the
development of OneClick extensions (external script keywords and button border
styles). The use of this feature requires some knowledge of Macintosh programming.
If you’re a Macintosh developer and you’re interested in adding new keywords to the
EasyScript language, or you want to develop new button border styles, visit WestCode
Software’s web site at http://www.westcodesoft.com.

Opening the OneClick Editor

All the palette customizing features are available in the OneClick Editor window. The
OneClick Editor is always available; you don’t need to run an application to access it.
To open the window, choose OneClick Editor from the OneClick menu.

Shortcut Press Command-Option-` to open or close the OneClick Editor.-ı-•
■

CHAPTER 1 ■ INTRODUCTION

Opening the OneClick Editor
A quick tour of the OneClick Editor

The OneClick Editor window contains six tabs
across the top. To choose a category of options,
click the appropriate tab.

The Button Library holds collections of pre-designed
buttons, organized by application. You can add new
buttons to a palette by dragging them from the Button
Library to the palette.

The Palette Editor lets you create a palette and change
the palette’s appearance. You can create palettes that appear
system-wide (global palettes) and palettes that appear only
when a specific application is active.
■ 19

CHAPTER 1 ■ INTRODUCTION

Opening the OneClick Editor

20
The Button Editor lets you create new buttons on a
palette. You can change a button’s icon, size, color, text
label, border style, keyboard equivalent, and other options.

The Script Editor lets you record and edit button scripts.
Using OneClick’s scripting language, EasyScript, you can add
advanced functionality to your recorded scripts or write new
scripts from scratch.

The Icon Editor lets you change the appearance of a
button’s icon. You can use the tools in the Icon Editor to
change the icons of existing buttons and to make new
icons.

The Icon Search lets you “raid” icons from applications or
other files containing icons. If you don’t want to create icons
from scratch, this is an easier method—just drag icons found
in other files to your palettes.
■

Chapter 2

Using the Button Library
The Button Library is a storage area for buttons. Buttons are organized into various
button library files. You can easily copy buttons from a library to any palette, and you
can create your own libraries to store buttons.

Many of the buttons available on WestCode’s web site are stored in library files. If you
download a library file, you can open the file in the Button Library and then drag the
buttons from the library to one of your palettes.

Drag a button to
the trash to delet
it from the libra

Choose a library
from the pop-up
menu

Click and type to
edit a button's
Balloon Help
message

Drag a script icon
to copy just the
button's script to
another button

Drag a button to
a palette to add
it to the palette

Drag a divider
line to change
the height of
list items

Drag to resize the
library window

Type a word to search for,
then click Find to show all the
buttons containing the word

Choose a search
word or add a word
to the pop-up menu
■ 21

CHAPTER 2 ■ USING THE BUTTON LIBRARY

22
Choosing a library of buttons

. To open the Button Library

1 Open the OneClick Editor.

2 Click the Library tab.

If a library for the active application exists, that library appears in the list box. The
list shows all the buttons in the library with a brief description of each button.
The active library’s name appears in the pop-up menu above the list.

3 To choose a different library, choose a library name from the pop-up menu.

The Universal library

In addition to several application-specific libraries, OneClick includes a Universal
library with buttons you can add to any palette. The Universal library contains useful
generic controls that you can use in any application.

Copying buttons and scripts from the library to a palette

. To copy a button from the library to a palette

■ Drag the button’s icon to an empty space on the palette.
■

CHAPTER 2 ■ USING THE BUTTON LIBRARY
All the button’s attributes are copied, including the icon, script, Balloon Help
message, and other settings.

If you want, you can copy only the button’s script from the library to another button
on a palette. Copying a script to another button replaces the button’s previous script,
if any.

. To copy a script from the library to a button on a palette

■ Drag a button’s script icon () from the library to a button on a palette.

When you drag a script icon over a button, the button highlights to show which
button will receive the new script.

Searching for specific buttons

In a library with a lot of buttons, you can use the Find feature to quickly search for the
buttons you want. OneClick displays only the buttons whose descriptions contain the
keyword you specify.

. To search for buttons

1 Choose the library you want to search from the Library pop-up menu.

2 Type the word or phrase you want to search for in the Keyword box.

3 Click Find.
■ 23

CHAPTER 2 ■ USING THE BUTTON LIBRARY

24
Only the buttons containing the search keyword appear in the library list.

4 To redisplay all the buttons in the library, click Show All.

You can add frequently used keywords to the Keyword pop-up menu.

■ To add a keyword to the pop-up menu, type a word or phrase in the Keyword
box, then choose Add.

■ To remove a keyword from the pop-up menu, choose the keyword, then choose
Remove.

When you choose a keyword from the menu, OneClick automatically finds and
displays the buttons containing the keyword (you don’t need to click Find).

Creating a library and adding buttons

You can create new libraries to store buttons you create and for applications that don’t
already have their own library. Putting buttons in a library lets you share your buttons
with other users; they can open your library and drag its buttons to their palettes.

. To create a new library

1 Choose New Library from the Library pop-up menu.

2 Type a name in the Name box, then click OK.

You can type up to 31 characters for the name.

An empty library appears in the list box, and you can now add buttons to the library.
The library file is stored in the Libraries folder within the OneClick Folder (in
Preferences).
■

CHAPTER 2 ■ USING THE BUTTON LIBRARY
You can add buttons to your own libraries or any of the pre-designed libraries that
come with OneClick.

. To add buttons to the library

■ Select and drag one or more buttons from a palette to the library list.

Dragging the button from a palette to the library

A red triangle on the left edge of the list shows where the button will be inserted
when you release the mouse button. Dragging a button to the library doesn’t
remove it from the palette; it makes a new copy of the button in the library.
■ 25

CHAPTER 2 ■ USING THE BUTTON LIBRARY

26
. To rearrange the order of buttons

■ Drag buttons up or down in the list.

■ To move a button to a position that isn’t in view, drag the button above or below
the list until the list starts scrolling. When the desired position appears, drag the
button back into the list and drop it in the list.

. To change the height of list items

■ Move the pointer over one of the dotted divider lines between list items.

■ When the cursor changes to the resize cursor (), drag the line up or down.

All list items change to the new height.

The descriptions next to each button are the buttons’ Balloon Help messages. You can
edit the Balloon Help text directly in the list; the help text is the same text that
appears in the Balloon Help dialog box in the Button Editor.

. To edit a button’s Balloon Help message

■ Click the button’s help text (to the right of the button) and type. You can use
Command-X, Command-C, and Command-V to cut, copy, and paste text in the
Balloon Help messages.

Changing the help text in the library does not change the help text for any copies of
the buttons already placed on palettes.

Managing library files

The Library pop-up menu lists all the library files found in the Libraries folder. You
can use the Open Library command in the pop-up menu to open a library file from
another disk or folder, which lets you use a library created by other OneClick users or
supplemental libraries provided by WestCode.

. To open a library file

1 Choose Open Library from the Library pop-up menu.

2 Use the directory dialog box to find and open the library file.
■

CHAPTER 2 ■ USING THE BUTTON LIBRARY
Note You can make the library available at all times by dropping the library file in the
Libraries folder within the OneClick Folder.

. To delete a button from the active library

■ Drag the button to the trash can icon in the upper-right corner of the library
window.

. To rename a library

1 Choose the library you want to rename from the Library pop-up menu.

2 Choose Rename Library from the pop-up menu.

3 Type a new name in the Library Name box, then click OK.

. To delete a library

1 Choose the library you want to delete from the Library pop-up menu.

2 Choose Delete Library from the pop-up menu.

Click Delete when the confirmation message appears.
■ 27

CHAPTER 2 ■ USING THE BUTTON LIBRARY

28
 ■

Chapter 3

Using the Palette Editor
The Palette Editor lets you create new palettes and change palette characteristics. The
features of a palette that you can change include the window title, size, location,
color, pattern, background picture, and button spacing.

Shortcut To quickly open the Palette Editor, Control-click the background of the
palette you want to edit, then choose Palette Editor from the contextual menu.

Type to rename the
selected palette;
choose a palette to
edit from the pop-up
menu

Choose colors and
patterns for the
palette's background
and title bar

Place a picture or
desktop pattern in the
palette's background

Type numbers to
change palette size
and location

Click to auto-fit the
palette around its
buttons

Type numbers to
adjust spacing
between buttons

Click to turn the
palette's title bar on
or off

Uncheck to keep
the palette from
appearing in the
OneClick menu

Uncheck to make
the palette app-
specific instead of
system-wide

Makes current
settings the default
for new palettes

Deletes the selected
palette

Creates a new,
untitled global
palette

Imports a new palette
from a palette file

Saves the selected
palette in a palette file
■ 29

CHAPTER 3 ■ USING THE PALETTE EDITOR

30
The following sections show how to create palettes and change their characteristics.
For information on changing a palette’s buttons or adding new buttons, see
Chapter 4, “Using the Button Editor.”

Creating a new palette

You can create new palettes and add buttons to them at any time. If you create a lot of
buttons for an application, you may find it useful to group the buttons on different
palettes based on their function. For example, in a graphics program you could have
one palette with buttons you use for file operations, and another palette with buttons
you use for editing scanned images. In a database program, you could create a
different palette for each database file you use.

Global and application-specific palettes

You can create two kinds of OneClick palettes: global palettes which appear in all
applications, and application-specific palettes that are available only in the
application they were created for. When you quit an application, its application-
specific palettes close automatically, while global palettes are always available.

The most common use you’ll have for a global palette is for opening applications or
documents and changing system-wide settings. You can put buttons on a global
palette that open your most frequently used applications and documents so that you
don’t have to switch to the Finder to open them.

Another use for a global palette is for buttons that work within different applications.
One convenient use would be to have a button that does the following:

■ Copy selected text (such as a mailing address) to the clipboard. (Note that it
doesn’t matter what application the text is copied from.)

■ Open an envelope-printing utility, such as Easy Envelopes+.

■ Paste the address text from the clipboard.

■ Print an envelope.

If you want to create buttons that work with more than one application (such as
buttons that copy information between different applications), create a global palette
to contain the buttons. For buttons designed to work only within a certain
application, create an application-specific palette.
■

CHAPTER 3 ■ USING THE PALETTE EDITOR
Note Adding a button to a global palette does not ensure that the button’s script will
work in all applications. Because most button scripts are tailored to specific
applications, using a script in an application it wasn’t written for could cause
unpredictable results. Usually, generic buttons (such as New, Open, Print, and so on)
will work in any application.

. To create a new, empty palette

1 If you want to create a palette for a specific application, switch to that
application.

2 Open the OneClick Editor.

3 Click the Palette tab.

4 Click New Palette.

A new, untitled global palette appears. You can now change the look of the
palette and add buttons.

5 If you want the palette to appear only in one application, switch to that
application, then uncheck the Global checkbox.

Selecting a palette to edit

Before changing a palette’s characteristics, you need to select it so OneClick knows
which palette you want to edit.

. To select a palette to edit

1 Open the OneClick Editor.

2 Click the Palette tab.
■ 31

CHAPTER 3 ■ USING THE PALETTE EDITOR

32
3 Click the palette you want to edit, or if the palette is hidden, choose its name
from the pop-up menu next to the Palette Name box in the Palette Editor.

–Or–

■ Control-click the background of the palette you want to edit, then choose Edit
Palette from the contextual menu. (This shortcut isn’t available for palettes that
override OneClick’s contextual menu with a custom contextual menu.)

The name of the selected palette appears in the Palette Name box. A resize box
appears in the lower-right corner of the palette to show it’s selected.

Shortcut If a palette is open, but it’s hidden behind the editor window or another
palette, you can bring it to the front by holding down the Option key and choosing
the palette’s name from the OneClick menu.

Changing a palette’s name

The default palette name is Untitled and a number, such as Untitled1.

. To change the palette’s name

■ Type a new name in the Palette Name box.

The name appears in the palette’s title bar. You can type up to 31 characters for
the name.

Consider naming your palettes based on the category of buttons you’ve placed on the
palette. For example, in Adobe Photoshop, you could have three palettes named
Scanning Tools, Color-Correction Tools, and Image Filters. In applications where you
use only one palette, you could just name the palette after the application, such as
ImageStyler Tools.

Changing a palette’s background

The palette background appears behind any buttons you place on the palette. You can
choose between a solid color background (the default is light gray), two kinds of
pattern backgrounds, or a picture background.
■

CHAPTER 3 ■ USING THE PALETTE EDITOR
. To change a palette’s background color or pattern

1 Choose a color from the Background Color pop-up menu.

The palette’s background changes to the color you picked.

2 If you want the palette to have a patterned background, choose a pattern from
the Pattern pop-up menu.

3 If you want a color pattern, choose a color from the Pattern Color pop-up menu.

The Palette and Title buttons determine which part of the palette is changed when
you choose options from the color or pattern menus. To change the color or pattern
of the palette’s title bar, click Title, then repeat the previous steps.

Choosing a custom color

If you want to use a different color that’s not included in the 256 colors available in
the color menu, you can use the Color Picker dialog box to choose a custom color.
Using a custom color works best if your monitor supports more than 256 colors.

. To choose a custom color

1 Select Choose Color from the bottom of the Color pop-up menu.

Background Pattern Pattern
Color Color
■ 33

CHAPTER 3 ■ USING THE PALETTE EDITOR

34
2 Do any of the following:

■ Drag over the color wheel to choose a hue (color) and saturation (intensity).

■ Use the scroll bar to choose a brightness.

■ Type color values in the number boxes.

3 Click OK when you’re done.

Note The Color Picker may look different depending on the system software you are
using. Refer to the manual for your system software if you need help.

Placing a picture or a large color pattern in the background

You can import a picture or a large color pattern to use for the palette’s background.
Buttons on the palette then appear to sit on top of the picture or pattern.

Large color patterns (sometimes called PPATs or desktop patterns) are usually 32
pixels square or larger in size and can contain more than two colors. A good source of
large color patterns is the Desktop Patterns control panel included in Mac OS 7.5 and
the Appearance control panel included in Mac OS 8 and later. Online services such as
America Online are also a good source of pattern files.

You can import a picture from any file containing a PICT format graphic.
■

CHAPTER 3 ■ USING THE PALETTE EDITOR
. To import a picture or large color pattern

1 Click Image.

2 Use the directory dialog box to select a file containing either color patterns or a
PICT graphic. (If you’re running Mac OS 8 or later, look in the Control Panels
folder for the Appearance control panel.)

The selected file’s images appear in the scroll box below the file list. (For PICT
files, only the upper-left corner of the picture appears in the list.) Use the scroll
bar to see more images.

3 To select a picture or pattern, click the image and click Open, or double-click the
image.

The image you chose appears in the palette’s background.

. To remove a picture or color pattern

1 Click Image.

2 Click Remove in the dialog box.

Changing a palette’s size

You can change the size of a palette three different ways.
■ 35

CHAPTER 3 ■ USING THE PALETTE EDITOR

36
. To resize a palette

■ Drag the palette’s resize box

–Or–

■ Type numbers in the Height and Width boxes in the Palette Editor

–Or–

■ Click Fit To Buttons in the Palette Editor

Clicking Fit To Buttons changes the palette’s height and with so that all its buttons
are visible without any empty space (except the margin) along the bottom and right
edges of the palette. Fit To Buttons changes the palette size only; it doesn’t move any
buttons.

If you resize a palette smaller so that not all of its buttons are visible, the hidden
buttons are not removed or disabled. Hidden buttons can still be called from scripts
in other buttons; this provides an easy way to create hidden “subroutine” buttons that
are used only by scripts in other buttons.

Changing a palette’s grid settings and button spacing

A palette’s grid lets you easily align and position buttons on a palette. Buttons snap to
points on an invisible grid as you drag them on the palette. When resizing a palette,
the resize box also snaps to the grid points.

To determine proper settings for the grid, consider the size of the buttons on the
palette and how much empty space you want between each button. For example, if
your buttons are 42 pixels wide by 20 pixels tall and you want two pixels of space
between each button, set the horizontal grid to 44 and the vertical grid to 22 (the
button’s dimensions plus 2 pixels of empty space). When you drag buttons on the
palette, they line up to the grid points, leaving two blank pixels between each button.

. To change the size of the grid spacing

1 Type new sizes in the Grid Width and Height boxes.

2 Drag buttons on the palette to make them snap to the new grid points.
■

CHAPTER 3 ■ USING THE PALETTE EDITOR
Shortcut To override the snap grid when dragging buttons or resizing a palette, hold
down any modifier key (Command, Option, Shift, or Control) while dragging.

A palette’s margin setting determines the amount of space between buttons and the
palette’s edges. A value of 2 means two pixels of empty space between a button and
the edge of a palette. Changing the margin setting affects the upper-left corner where
the grid starts.

. To change the size of the palette margin

1 Type a new size in the Margin box.

2 Click Fit To Buttons to resize the palette with the new margin setting.

Turning a palette’s title bar on or off

Some of the palettes that come with OneClick, such as the System Bar and Finder
palettes, don’t display standard title bars. You can turn a palette’s title bar on or off
with the Title Bar checkbox.

. To turn a palette’s title bar on or off

■ Check or uncheck the Title Bar checkbox.

. To move a palette that doesn’t have a title bar

■ If the OneClick Editor is open, hold down the Option key and drag the palette’s
background.

■ If the OneClick Editor is closed, hold down Option, Command, or Shift and drag
the palette’s background.

Keeping a palette from appearing in the OneClick menu

Some “secondary” palettes that you may not use regularly are not listed in the
OneClick menu. For example, you can display the System Folders palette only by
clicking the System Folders button on the System Bar—the palette doesn’t appear in
■ 37

CHAPTER 3 ■ USING THE PALETTE EDITOR

38
the OneClick menu. You can use the Display in Menu checkbox to keep other
palettes from appearing in the OneClick menu.

. To hide or show a palette’s name in the OneClick menu

■ Check or uncheck the Display in Menu checkbox.

Note All available palettes appear in the OneClick menu whenever the OneClick
Editor is open, allowing you to show or select any palette that doesn’t normally
appear in the menu.

Changing the default settings for new palettes

You can change the default colors, size, grid, margin, and other settings for any new
palettes you create. When you change the default settings, new palettes you create
contain the current settings in the Palette Editor, except for the global setting and the
palette’s name which remains Untitled.

. To change the default settings for new palettes

1 Change the settings in the Palette Editor to the settings you want new palettes to
have (colors, size, and so on).

2 Click Make Default.

Using the Make Default feature is a quick way to copy the characteristics of one palette
to a new palette. Just select a palette, click Make Default, then click New Palette.

Deleting a palette

Deleting a palette permanently removes the palette and all the buttons it contains.
Before deleting a palette, make sure you’ve copied to another palette (or library) any
buttons you want to keep.

. To delete a palette

1 Select the palette you want to delete.
■

CHAPTER 3 ■ USING THE PALETTE EDITOR
2 Click Delete Palette.

If the palette contains any buttons, OneClick displays a message asking if it’s OK to
delete the palette.

Note Make sure you really want to delete the palette and all its buttons. This step
cannot be undone.

3 Click Delete.

The palette is permanently removed.

Managing palette files

Palettes are stored in palette files in the Button Palettes folder (inside the OneClick
Folder in Preferences). Each palette file can contain one or more palettes. All global
palettes are stored in a single file named Global Palettes, while application-specific
palettes are stored in files named after their associated application, followed by the
word Palette, such as “SimpleText Palette” or “Adobe Illustrator® 8.0 Palette.”

At system startup, OneClick opens the Global Palettes file and loads the palettes in
that file. When you open an application that has an associated palette file in the
Button Palettes folder, OneClick loads the palettes from the palette file and adds them
to the OneClick menu. Any changes you make to active palettes are automatically
saved to the corresponding palette file in the Button Palettes folder.

Loading palette files by an application’s creator code

OneClick associates an application with its palette file by name, so that if you open an
application named “SimpleText 1.2,” OneClick looks for a palette file named
“SimpleText 1.2 Palette” in the Button Palettes folder. If you open another version of
the application named “SimpleText 1.3.1,” however, OneClick won’t load the palettes
in the file named “SimpleText 1.2 Palette” because the names don’t match.

You can have OneClick locate a palette file using an application’s creator code instead
of its file name by including the creator code in square brackets in the palette file’s
name. When a palette file name includes a creator code, OneClick goes by the creator
code and ignores the application name when locating the palette file to open. For
■ 39

CHAPTER 3 ■ USING THE PALETTE EDITOR

40
example, the palettes in file “SimpleText [ttxt] Palette” open when you launch
SimpleText, regardless of the actual file name of the SimpleText application. The
creator code in square brackets can appear anywhere in the palette file name (if the
creator code is present, the file name is ignored).

Using palette file backups

OneClick automatically backs up palette files to help recover from accidental file
corruption. Each time the system or an application starts up, OneClick opens the
associated palette file, then stores a copy of the palette file in the Backup folder
(inside the Button Palettes folder). If for any reason OneClick cannot open the palette
file (because it has become corrupted due to a system crash, for example), OneClick
displays an alert message and adds the word “(damaged)” to the end of the palette
file’s name. When OneClick encounters a damaged palette file, it automatically
restores and opens the previous working copy from the Backup folder. When starting
up the computer or when opening an application, if you see a message telling you
that a palette file has been damaged, you should open the Button Palettes folder and
drag the damaged file to the Trash, then empty the Trash.

Exporting a palette to a file

If you want to share with other people any palettes that you’ve created, you can
export the palettes to files on a disk. You can also use the export feature to make
backup copies of palettes.

. To export a palette to a file

1 Select the palette you want to export (so that its name appears in the Palette
Editor).

You can export only one palette at a time.

2 Click Export Palette.
■

CHAPTER 3 ■ USING THE PALETTE EDITOR
A directory dialog box appears with a default name for the palette file.

3 Choose a location and type a new name (if desired), then click Save.

Importing a palette from a file

To import a palette from a file, use the Import Palette button. Importing a palette
copies the palette(s) you choose into the active application’s palette file or into the
Global Palettes file. This lets you use palettes given to you by other people or
downloaded from online services.

. To import a palette

1 If you want the palette you’re importing to be application-specific, switch to the
desired application first.

2 Click Import Palette.

3 Select the palette file containing the palette you want to import.
■ 41

CHAPTER 3 ■ USING THE PALETTE EDITOR

42
All the palettes contained in the palette file appear in the bottom list box.

4 Select the palette you want to import. Command-click palette names to select
multiple palettes.

The Import as Global Palette checkbox appears checked if the palette was a
global palette when it was exported.

5 If you want the new palette to be global, check the Import as Global Palette
checkbox. Uncheck the box if you want the imported palette to work only in the
active application.

6 Click Select.

The imported palette appears on the screen. Close the OneClick Editor to use it.

Duplicating an active palette

Importing a palette from one of your active palette files is the easiest way to make
working copies of any palette.

. To duplicate a palette

1 If you want the palette you’re duplicating to be application-specific, switch to the
desired application first.

2 Click Import Palette.
■

CHAPTER 3 ■ USING THE PALETTE EDITOR
3 Go to the Button Palettes folder (System Folder:Preferences:OneClick
Folder:Button Palettes).

The Button Palettes folder contains all of your active palette files. The Global
Palettes file contains all the global palettes; other files named after applications
contain application-specific palettes.

4 To duplicate a global palette, select the Global Palettes file. To duplicate an
application-specific palette, select the application’s palette file.

All the palettes contained in the palette file appear in the bottom list box.

5 Select the palette you want to duplicate. Command-click palette names to select
multiple palettes.

6 If you want the new palette to be global, check the Import as Global Palette
checkbox. Uncheck the box if you want the imported palette to work only in the
active application.

7 Click Select.

The new palette appears in the same place on the screen as the original palette (if the
original palette is open). Drag the new palette out of the way to see the original
palette. Be sure to give the duplicate palette a new name so you don’t get it confused
with the original palette you copied.

Note Button scripts that refer to a palette by name may not work correctly if two
palettes have the same name. Make sure all your palettes have unique names.
■ 43

CHAPTER 3 ■ USING THE PALETTE EDITOR

44
 ■

Chapter 4

Using the Button Editor
The Button Editor lets you change a variety of attributes for buttons, such as the
button’s name, visual appearance, help message, and keyboard shortcut. You can also
create, duplicate, and delete buttons.

. To open the Button Editor

1 Open the OneClick Editor.

2 Click the Button tab.

Type to rename
the selected
button; choose a
button to edit from
the pop-up menu

Use pop-up
menus to choose
a border style,
color, and icon

Type numbers
to change the
button’s size
and position

Click in the box
and press a key
to assign a
keyboard shortcut

Click to add a Balloon
Help message

Makes current settings
the default for new buttons

Text label (appears
on button's face)

Choose the font,
size, style, and
color of the
button’s text label

Creates a new, blank button Deletes selected
buttons

Click to position
the button’s text
or icon
■ 45

CHAPTER 4 ■ USING THE BUTTON EDITOR

46
Shortcut To quickly open the Button Editor (if the OneClick Editor is closed), hold
down the Control key and click the button you want to edit, then choose Edit Button
from the contextual menu. (This shortcut isn’t available for buttons that override
OneClick’s contextual menu with a custom contextual menu.)
—Or—
If the OneClick Editor is open, but another editor is active, double-click the button
you want to edit to switch to the Button Editor.

Creating a new button

The first step in creating and customizing a button is to add a new button to a palette.
After you’ve added a button, you can change its visual attributes in the Button Editor,
add an icon in the Icon Editor, and record or write a script for it in the Script Editor.

. To add a button to a palette

■ Select the palette on which you want to add a button, then click New Button.

–Or–

■ Click the palette on which you want to add a button, then press Command-N.

Note Clicking the palette allows the palette to receive keystrokes. If you don’t click
the palette before pressing Command-N, then the keystroke goes to the active
application or the OneClick Editor window (wherever you last clicked).

The new button appears in the first open space on the palette. If the palette is full of
buttons and there’s no room for a new one, then the palette enlarges itself to hold the
new button. If the palette is short and wide, then consecutive buttons are added from
left to right; on tall and narrow palettes, buttons are added from top to bottom.

Selecting buttons to edit

All operations you perform in the Button Editor work on the selected button(s). You
must first select a button before choosing options in the Button Editor.
■

CHAPTER 4 ■ USING THE BUTTON EDITOR
. To select a button

■ Click the button you want to select.

The selected button’s name appears in the Button Editor’s Name box. Selection
handles appear on the button’s corners to indicate it’s selected, and a resize box
appears in the palette’s lower-right corner to indicate the palette is also selected.

. To select more than one button

■ Hold down the Shift key and click additional buttons.

–Or–

■ Click the mouse on the palette’s background and drag over the buttons you want
to select.

Any buttons inside (or touching) the selection rectangle become selected.

–Or–

■ To select all the buttons on a palette, click the palette’s background, then press
Command-A.

After you select multiple buttons, you can change the attributes of the selected
buttons all at once.

Resizing selected buttons

You can resize buttons two different ways.
■ 47

CHAPTER 4 ■ USING THE BUTTON EDITOR

48
. To resize selected buttons

■ Drag a resize handle on one of the button’s corners.

–Or–

■ Type numbers in the Width and Height boxes in the Button Editor.

If you have multiple buttons selected, all the selected buttons change size.

You can make a button look like a line by setting its height or width to 1. (Changing
the height to 1 draws a horizontal line, changing the width to 1 draws a vertical line.)

Moving and aligning buttons

When you drag buttons on a palette, the buttons snap to the grid points that are set in
the Palette Editor (see “Changing a palette’s grid settings and button spacing” on
page 36). You can drag a group of buttons by selecting all the buttons in the group,
then dragging one of the selected buttons.

. To nudge a button one pixel in any direction

■ Click the palette’s title bar (so the palette can receive keystrokes), then press the
arrow keys to nudge the selected button(s).

. To nudge a button by the number of pixels in the grid

■ Click the palette’s title bar (so the palette can receive keystrokes), then hold
down the Command key and press the arrow keys.

. To move a button to an exact pixel location on the palette

■ Type numbers in the X (left) and Y (top) boxes.

The palette’s left and top coordinates start at 0, 0.

Editing and formatting a button’s text label

Text you type in the Button Text box appears on the button’s face. Use button text to
convey the button’s purpose if the purpose is difficult to represent with an icon.
■

CHAPTER 4 ■ USING THE BUTTON EDITOR
. To change the button’s text label

1 Click the Button Text box to make it active (so the Button Editor can receive
keystrokes).

2 Type or paste text in the box.

The length of the button’s label is limited only by available memory. If there’s too
much text to fit on one line in the button, the text wraps automatically.

3 Choose formatting options from the Font, Size, and Color menus, or click the
style buttons to apply different styles.

Each button on a palette can have a different text format.

You can change the text formatting for all the selected buttons at once, but you can
edit the text for only one button at a time.

Adding a keyboard shortcut

Each button on a palette can have its own keyboard shortcut that activates the button.
When you press the button’s shortcut key, the button’s script runs just as if you had
clicked the button. A button or its palette do not need to be visible on screen to be
triggered by a keyboard shortcut.

Note You can override an application’s command keys by defining a button with the
same shortcut key. If an application and a OneClick button both use the same
shortcut key, the OneClick button takes precedence.

Color

Font Size

Text Label

Plain
Bold Italic

Underline
■ 49

CHAPTER 4 ■ USING THE BUTTON EDITOR

50
. To assign a shortcut key

1 Click the Key box to make it active.

2 Press a key combination (such as Command-Option-S) or a function key (such as
F12).

■ Choose a shortcut key that won’t conflict with any command keys you use in
other applications.

■ No two buttons can have the same shortcut key.

If the key you press is already assigned to another button, a dialog box appears.

3 Do one of the following:

■ To go back and type a different shortcut key, click Cancel.

■ To find the other button that has the same shortcut, click Select Conflicting
Button. OneClick shows the palette containing the conflicting button and
then selects the button so you can change or remove its shortcut key.

■ To add the shortcut anyway, click Override. OneClick removes the shortcut
from the button named in the dialog box and assigns it to the selected
button.

To activate the button with the shortcut, close the OneClick Editor, then press the
shortcut key.

. To remove a shortcut key

■ Click the Key box to select the shortcut, then press Delete.
■

CHAPTER 4 ■ USING THE BUTTON EDITOR
Adding a Balloon Help message

Each button can have a help message that appears in Balloon Help and in the Help
Status area of the System Bar. Newly-created buttons have no help message.

. To edit a button’s help message

1 Click the balloon button ().

2 Type a help message (up to 255 characters) in the dialog box. Press Return to
insert blank lines in the message.

3 Click OK.

When you turn on Balloon Help (or press Shift-Option) and point to the button, the
button’s help message appears in a balloon.

Choosing which icon appears on a button

Each button can contain up to four different icons, not just one, although a button
displays only one icon at a time. You use the Icon pop-up menu to determine which
icon (1–4) appears on the button. The default icon is 1.

You can view and edit a button’s four different icons in the Icon Editor. A newly-
created button contains only blank icons until you edit them using the Icon Editor or
Icon Search. For more information on editing and retrieving icons, see “Using the
Icon Editor and Icon Search” on page 79.

The most common reason for having different icons in a button are for scripts that
switch the button’s icon to indicate a different state—on, off, or disabled states, for
■ 51

CHAPTER 4 ■ USING THE BUTTON EDITOR

52
example. If you don’t write scripts, then you’ll probably never need to use icons 2, 3,
and 4. Leave the setting on Icon 1.

. To choose a different icon

1 Check the box next to the Icon pop-up menu if it’s not already checked.

2 Choose an icon number (1–4) from the pop-up menu.

. To hide a button’s icon

■ Uncheck the box next to the Icon pop-up menu.

OneClick doesn’t remove any of the button’s stored icons if you uncheck the
checkbox. It just doesn’t show an icon on the button. You can still view and edit the
icons in the Icon Editor.

Changing a button’s name

A button’s name doesn’t appear anywhere on the button, just in the Button Editor and
Script Editor. In a button’s script, you can refer to other buttons by their names, so
each button on a palette should have a unique name. A button name can be up to 31
characters long.

. To change a button’s name

■ Type a new name in the Name box.

You can rename only one button at a time.

Changing other visual properties of buttons

For the following properties in the Button Editor, you can apply properties to more
than one button at a time. To do so, select multiple buttons and then choose the new
property (color, border style, appearance, and so on).

. To change a button’s color

1 Check the checkbox next to the Color pop-up menu if it’s not already checked.
■

CHAPTER 4 ■ USING THE BUTTON EDITOR
2 Choose a new color from the pop-up menu.

To choose a color not shown in the menu, select Choose Color to open the
Color Picker dialog box. (See “Choosing a custom color” on page 33.)

. To make a button transparent (so the palette’s background shows through)

■ Uncheck the box next to the Color pop-up menu.

. To change a button’s border style

■ Choose a new border style from the Border pop-up menu.

There are a dozen border styles to choose from. The “None” style means the button
has no border—only the text, color, and icon (if any) appear on the button.

By choosing the pop-up menu () style, you can automatically add a downward-
pointing triangle to the button’s right side. Use this style for buttons that behave like
pop-up menus or tear-off palettes. For more information, see PopupMenu,
PopupFiles, and PopupPalette in the OneClick Authoring Guide.
■ 53

CHAPTER 4 ■ USING THE BUTTON EDITOR

54
. To change a button’s visual appearance (highlighting)

■ Choose an option from the bottom part of the Appearance pop-up menu.

Choosing an option changes the look of the button (its highlighting or shading,
or its pushed-in/popped-out appearance). “Lighter” and “Darker” make the
whole button (text, color, and icon) look either 50% lighter or 50% darker.
“Disabled” means the button won’t push in or highlight when you click it.
Disabled buttons still work normally when you click them.

■ Deselect the Visible option to prevent the button from appearing on the palette.

Invisible buttons don’t appear on the palette when the OneClick Editor is closed;
they appear only when you open the OneClick Editor and select the palette.
Invisible buttons are used mainly as hidden subroutine buttons for scripts—you
can’t see or click an invisible button, but you can call its script from another
button’s script.

. To align a button’s text label or icon in the button

1 In the Position box, click the Text or Icon option to specify what you want to
align.

2 Click a point on the Position grid to move the button’s text or icon.

If the text or icon doesn’t appear to move when you click different points, try
making the button larger. Then click the points again to see the effect.

Changing the default settings for new buttons

You can change many of the default settings for new buttons you create. Doing so lets
you make several new buttons that all have the same look and feel, and you don’t have
to change each button’s settings in the Button Editor after creating them. Default
settings you can change include the following:

■ border style

■ color

■ size

■ text formatting (font, size, style, and color)
■

CHAPTER 4 ■ USING THE BUTTON EDITOR
■ text position

. To change the default settings for new buttons

1 Change the settings in the Button Editor to the settings you want new buttons to
have (border style, size, and so on).

2 Click Make Default.

Using the Make Default feature is also a quick way to copy the characteristics of one
button to new buttons you create. Just select a button, click Make Default, then click
New Button.

Duplicating buttons

You can use either keyboard commands or drag and drop to make copies of buttons.
Duplicating a button copies all button properties, including the button’s icon, script,
and all settings in the Button Editor.

. To duplicate a button

■ Select the button to duplicate, then press Command-D.

The new button appears offset below and to the right of the original button.

. To copy a button from one palette to another

■ Drag the button to another palette.

. To move a button from one palette to another

■ Hold down the Option key and drag the button to another palette.

Deleting buttons from a palette

There are several ways you can delete buttons depending on whether the OneClick
Editor is open or closed.
■ 55

CHAPTER 4 ■ USING THE BUTTON EDITOR

56
. To delete selected buttons with the OneClick Editor open

■ Press the Delete key.

–Or–

■ Click Delete Button in the Button Editor.

. To undo (restore) a deleted button

■ Click the palette containing the buttons you deleted, then press Command-Z.

Note To undo a deleted button, you must do so before closing the OneClick Editor,
selecting a different palette to edit, or deleting additional buttons. Otherwise the
deleted button cannot be restored.

. To delete a button when the OneClick Editor is closed

■ Control-click the button to delete, then choose Delete Button from the
contextual menu. (This shortcut isn’t available for buttons that override
OneClick’s contextual menu with a custom contextual menu.)
■

Chapter 5

Using the Script Editor
This chapter describes all the features of the Script Editor. The chapter covers the
following topics:

■ Accessing the Script Editor

■ Recording a script

■ Typing and editing in the script pane

■ Checking a script for errors

■ Running a script

■ Printing scripts

■ Getting help for script keywords

■ Inserting parameters for script keywords

■ Script compiler error messages

About the Script Editor

The Script Editor lets you record, write, and edit scripts for buttons. It’s the one editor
you’ll probably use most often as you create your own custom buttons and palettes.

The Script Editor also provides online help for all the keywords in the EasyScript
language.
■ 57

CHAPTER 5 ■ USING THE SCRIPT EDITOR

Accessing the Script Editor

58
You can use the Script Editor to view and make changes to the scripts for any of
OneClick’s pre-designed buttons. Using the Script Editor is a good way to find out
how the pre-designed buttons work. Because the buttons all perform their tasks by
running EasyScript scripts, you’ll discover some valuable scripting techniques in the
pre-designed buttons that you can copy and use in your own scripts.

Accessing the Script Editor

There are several ways to open the Script Editor and view a button’s script.

. To display a button’s script

1 Choose OneClick Editor from the OneClick menu.

2 On any OneClick palette, click the button whose script you want to view or edit.

Choose a button
script to edit

Show a list of
keywords and
descriptions

Show help for
the highlighted
keyword

Type or record
statements in
the script pane

Toggle word
wrap on or off

Check for
errors

Revert to the
last saved
version

Drag to resize the
editor window

Quickly insert
parameters for
keywords

Watch your
actions and
record them in
a script

Stop script
recording or
playback

Play back the
script

Status area

Print the script
or help topic

Jump to a
handler or
label
■

CHAPTER 5 ■ USING THE SCRIPT EDITOR

Recording a script
3 Click the Script tab in the OneClick Editor window.

The selected button’s script appears in the Script Editor.

Because writing a button script is usually an interactive process (record, edit, test,
edit, test, and so on), OneClick provides several shortcuts you can use to access the
Script Editor.

Recording a script

When you record a script, OneClick watches your mouse and keyboard actions and
saves them as statements in the script. Recording is the best way to start writing a new
script or to insert new statements in an existing script.

To Do this

Create a new, blank button and edit its script Command-Option-click a palette where you want the
new button to appear, then choose Script New
Button from the pop-up menu.

Edit a button’s script when the OneClick
Editor window is closed

Command-Option-click the button, then choose Edit
Script from the pop-up menu.

Edit a different button’s script while the
Script Editor is active

Click the button to edit or choose the button’s name
from the pop-up menu in the Script Editor.
■ 59

CHAPTER 5 ■ USING THE SCRIPT EDITOR

Recording a script

60
. To record a script

1 Place the insertion point in the script where you want the new statements to
appear.

2 Click the Record button.

The following indicators show that recording is in progress:

■ A microphone icon flashes in the menu bar.

■ The Record button lights up in the Script Editor.

■ The button you’re recording flashes on the palette.

3 Perform the actions (clicking and typing) that you want the script to contain.

Perform actions in an application as you normally would. A new script statement
appears in the script pane each time you click or type.

When recording clicks on unnamed buttons in a dialog box or window, OneClick
records the SelectButton statement with the dialog button’s index number
instead of a name. The SelectButton statement plays back normally.

If you want to temporarily stop recording, choose Pause Recording from the
OneClick menu. To continue recording where you left off, choose Resume
Recording from the OneClick menu.

4 Click the Stop button or choose Stop Recording from the OneClick menu.

Recording stops automatically if you close the OneClick Editor window while
recording.

Note While recording is in progress, you can click other buttons to run their scripts,
but those actions won’t be recorded into the script you are recording.
■

CHAPTER 5 ■ USING THE SCRIPT EDITOR

Recording a script
The following table shows how OneClick records typical mouse and keyboard actions
as script commands.

Tips for recording a script

Usually, statements that use the SelectMenu, SelectPopUp, SelectButton, and Scroll
commands perform more reliably than those that use Click commands. This is
because the Click command performs just a simple click or drag on the screen at the
specified coordinates; the command has no knowledge of what it is clicking at that
location. Other commands are more intelligent: SelectButton, for example, clicks a
named button and will work no matter where the button appears on the screen.

Follow these guidelines when recording a script to improve the script’s reliability.

■ Choose menu commands and type command keys where possible instead of
clicking or dragging. For example, to switch to the Finder, you should choose
“Finder” from the Application menu instead of clicking the desktop or a Finder
window. This is because windows and items in them may not be in the exact
same position each time you run the script. When recording, it’s best to perform
actions that you know will work the same way every time without depending on
the position of items on the screen.

■ When choosing a file in a directory dialog box, type the file’s name to select it
instead of clicking a name in the list. The file may not be in the same position in
the list each time you run the script, so a Click statement may not choose the
correct file.

Your action Script command

Typing text or commands Type

Choosing an item from a menu in the menu bar SelectMenu

Choosing an item from a pop-up menu SelectPopUp

Clicking a button in a window or dialog box SelectButton

Clicking in a scroll bar Scroll

Clicking or dragging within a window Click

Clicking or dragging outside a window Click Global
■ 61

CHAPTER 5 ■ USING THE SCRIPT EDITOR

Typing and editing in the script pane

62
■ To select Finder icons, type the icon’s name instead of clicking it. Icons may not
always be in the same position.

■ Take your time when recording a script to avoid making mistakes. The script
recorder records any mistakes you make as well as your corrections, so it’s best to
go slow and be careful while recording. Of course, if you do make mistakes while
recording a script, you can edit the script later to correct any errors.

Typing and editing in the script pane

The script pane works similar to other text editing programs for the Macintosh.

. To type statements in the script pane

1 Click in the script pane to place the cursor where you want your statements to
appear.

You need to click in the Script Editor to make it active before typing. Otherwise,
keystrokes go to the active application or the selected palette (wherever you last
clicked). The OneClick Editor window’s title bar frame appears darkened when
the window is active and receiving keystrokes.

2 Type a script statement.

3 Press Return to signal the end of the statement and move the cursor down to the
next line.

Script statements do not automatically word-wrap when you type past the right edge
of the script pane. Use the horizontal scroll bar to scroll sideways if your script
statements go past the edge of the script pane. Or, resize the Script Editor by dragging
the size box in the lower-right corner of the window.

You can enable automatic word wrap if you’re working on a small screen and don’t
want to scroll back and forth to see all of a line.

. To turn word wrap on or off

■ Click the button next to the horizontal scroll bar.
■

CHAPTER 5 ■ USING THE SCRIPT EDITOR

Typing and editing in the script pane
Note Because EasyScript is a line-based language (meaning each statement occupies
only one line), it’s easier to see where one statement ends and the next statement
begins if you leave word wrap turned off.

Script editing shortcuts

You can use the following shortcuts to select and edit text in the Script Editor.

Jumping directly to a line in a script

The Script Editor’s Label pop-up menu is useful for navigating long scripts. The menu
lists all of the handlers and any labels in the script. Selecting an item from the menu
jumps immediately to that handler or label.

To put a label in the script, add a comment with all or part of the comment’s text
within angle brackets (“<>”). For example, either of the following adds the label
“get the list of files” to the Label menu.

// <get the list of files>
// This routine will <get the list of files> from the Data folder

To do this Do this

Select a word Double-click the word.

Select a line Triple-click the line.

Select all text Press Command-A or quadruple-click in the script.

Cut text to the clipboard Press Command-X.

Copy text to the clipboard Press Command-C.

Paste text from the clipboard Press Command-V.

Undo the last typing or editing action Press Command-Z.

Insert special characters in a script
(such as Return, Delete, or arrows)

Hold down Option and type the character (Option-Return,
Option-Delete, Option-Left Arrow, and so on).

Delete the character to the right of the
cursor (forward delete)

Press Shift-Delete.
■ 63

CHAPTER 5 ■ USING THE SCRIPT EDITOR

Typing and editing in the script pane

64
The comment must be the only statement on the line. The following will not work.

Variable A // This is <Variable A>

Checking a script for errors

Whenever you click Run or close the Script Editor, OneClick first checks the script for
errors. An error can occur because of a typographical mistake or a misspelling.

. To check a script for errors

■ Click the button in the Script Editor.

If any errors are present, a message describing the error appears in the status area and
the location of the error appears highlighted in the script. See “Script compiler error
messages” on page 76 for more information about each possible error.

You need to correct any errors in the script before you can save it and close the Script
Editor.

Compiling a script

When you check a script for errors, OneClick compiles the script. Compiling means
that OneClick translates the script from its human-readable text format into a more
compact binary format. OneClick can understand and execute a compiled script much
faster than a script in text format.

When OneClick compiles a script, each keyword is translated into a two-byte code;
characters in literal strings and comments each take up one byte. A script statement
must compile to less than 256 bytes or an error occurs. This method of compiling a
script is often called tokenizing in other scripting or programming languages.

Automatic script formatting

You’ve probably noticed that when you save a script or check its syntax, OneClick
reformats the script in the following ways:

■ The case of any keywords you typed changes to the “proper” case (for example,
“selectmenu” changes to “SelectMenu”).

■ The case of variable names changes to the case used in the Variable statement.
■

CHAPTER 5 ■ USING THE SCRIPT EDITOR

Typing and editing in the script pane
■ Extra spaces between keywords, operators, and values are added or removed as
necessary.

■ Handlers and loops are indented with tab characters.

This reformatting occurs because OneClick decompiles the compiled script after the
script compiles successfully. The compiled version, which does not retain any
formatting, is translated back into a formatted text version that you can edit in the
Script Editor. While you can control the script’s content, OneClick helps improve the
script’s readability by controlling most of the formatting.

Saving changes to a script

Normally, you don’t need to explicitly save a script after making changes to it;
OneClick automatically saves the changes. You can, however, make OneClick save the
changed script to its button at any time if you want.

. To save a script to its button

■ Press Command-S.

Before saving a script, OneClick first attempts to compile the script. A message
appears in the status area if the script contains errors, just as if you had clicked the
button. After the script compiles without errors, OneClick saves the compiled script to
the script’s button.

OneClick automatically saves a changed script whenever you do any of the following:

■ close the Script Editor

■ switch to another button’s script in the Script Editor

■ switch to another editor in the OneClick Editor window

■ quit the active application (if the script is for a button on an application-specific
palette)

■ run the script by clicking the Run button or pressing Command-R

If you try to close the Script Editor (or switch to another button’s script) while the
current script contains errors, a dialog box appears:
■ 65

CHAPTER 5 ■ USING THE SCRIPT EDITOR

Running a script

66
Click Edit to return to the Script Editor and fix the error, or click Discard Changes to
throw away all changes you’ve made to the script since you last saved it.

Reverting to the last saved script

While editing a button’s script, you can cancel any changes you’ve made revert to the
last saved version of the script.

. To revert to the last saved version of the script

■ Click the button in the Script Editor.

Running a script

You can play back the script to test it while the Script Editor remains open.

. To run the current script in the Script Editor

■ Click the Run button or press Command-R.

OneClick runs only the default handler in the script (usually MouseUp). To run other
handlers, such as DragAndDrop or MouseDown, you must close the Script Editor and
use the button as you normally would (click it or drag something to it) to trigger the
appropriate handler.

. To stop a running script

■ Click the Stop button or press Command-period.
■

CHAPTER 5 ■ USING THE SCRIPT EDITOR

Printing scripts
Printing scripts

You can print the current script, all scripts for buttons on the selected palette, or all
scripts for visible (not hidden) palettes.

. To print one or more scripts

1 Click the button or press Command-P.

The bottom of the Print dialog box contains some additional options.

2 Choose one of the options on the left to specify which scripts you want to print.

To print scripts in a hidden palette, choose the palette from the OneClick menu
to make it visible first. Then choose the third option.

3 To set paper size, orientation, and other printing options, click Page Setup and
set the desired options, then click OK.

4 Click Print.

You can press Command-period to cancel printing.

Getting help for script keywords

The Script Editor provides two methods you can use to get online help for keywords:
the Keyword List mode and the Detailed Help mode.

Using the Keyword List

The Keyword List mode is an online version of Appendix A, “EasyScript Summary.”

. To use the Keyword List

1 Click the button or press Command-Tab in the Script Editor.
■ 67

CHAPTER 5 ■ USING THE SCRIPT EDITOR

Getting help for script keywords

68
A list of all EasyScript keywords appears in place of the script pane.

2 Click a keyword in the list.

The selected keyword’s name and parameters, if any, appear in the status area.

You can quickly scroll to the desired keyword by typing the first few letters of the
keyword.

3 If desired, you can reduce the number of keywords displayed in the list by
choosing a keyword category from the pop-up menu (shown at left).

Only keywords of the type you choose (such as Functions, Commands, or Menu-
related keywords) appear in the list. For example, if you choose Mouse from the
pop-up menu, the keyword list changes to show only the keywords that perform
mouse-related activities.

4 To turn off the Keyword List mode, click the button again or press Command-
Tab.

Using Detailed Help

The Detailed Help mode is an online version of Chapter 8, “EasyScript Reference.”
■

CHAPTER 5 ■ USING THE SCRIPT EDITOR

Getting help for script keywords
. To get detailed help for a keyword

■ If you’re editing a script, double-click a keyword in the script to select it, then
click the button or press Command-? to get help for the selected keyword.

–Or–

■ If you’re viewing the Keyword List, select a keyword in the list, then do one of the
following:

■ click the button,

■ double-click the keyword, or

■ press Return or Command-?.

Information for the selected keyword appears in the script pane. Help for each
keyword includes the following:

■ keyword syntax and parameters

■ what the keyword does

■ why and when you would use it

■ sample scripts that use the keyword

You can use Command-C to copy sample script statements from the keyword help and
paste the copied statements in your own script.

Printing keyword help

If your manual isn’t close at hand, you can print selected topics from the detailed
help.

. To print help for one or more keywords

1 While in Detailed Help mode, click the button or press Command-P.

The bottom of the Print dialog box contains some additional options.
■ 69

CHAPTER 5 ■ USING THE SCRIPT EDITOR

Inserting parameters for script keywords

70
2 Choose one of the options on the left to specify which help topics you want to
print.

The Current Help option prints the help topic that’s displayed in the Script
Editor.

To print help for keywords in a certain category (such as Menu- or Mouse-related
keywords), choose the category from the pop-up menu, then choose the second
option.

3 To set paper size, orientation, and other printing options, click Page Setup and
set the desired options, then click OK.

4 Click Print.

You can press Command-period to cancel printing.

Note Printing help for all keywords may take a while and use up a lot of paper.

Inserting parameters for script keywords

The Parameters pop-up menu lets you insert parameters for various keywords into a
script. Parameters that could otherwise be lengthy to type or tedious to figure out can
be inserted in the script with just a few clicks.

. To insert a parameter using the Parameters pop-up menu

1 Place the insertion point where you want the parameter to appear in the script.
(Usually you’ll want the parameter to appear following its keyword and a space.)

2 Choose an option from the Parameters menu.

3 If the option you choose displays a dialog box, choose options in the dialog box
and click OK.

The new parameter appears in the script at the insertion point. If the parameter is a
string, then OneClick also inserts quote marks at either end of the string.

The following sections describe each option in the Parameters menu.
■

CHAPTER 5 ■ USING THE SCRIPT EDITOR

Inserting parameters for script keywords
Button

The Button submenu contains the names of all named buttons in all on-screen dialog
boxes and windows. Use the Button submenu to quickly insert the name of a button
for use with the SelectButton or DialogButton keywords.

For more information, see “SelectButton command” on page 287 and “DialogButton
object” on page 187.

Click

Use the Click option to insert screen or window coordinates for use with the Click
command, or any other keyword that requires screen coordinates as a parameter.
When you choose Click, a dialog box appears:

You can click the buttons in the miniature screen to reposition the dialog box if it’s in
the way of where you want to click.

When you click and release the mouse button, OneClick inserts the mouse click’s
coordinates in the script. If you click within a window, the coordinates are local to the
window; if you click outside of a window (such as on the desktop), the keyword
Global is also inserted, indicating the coordinates are global to the entire screen.

Button submenu when the Page Setup Options
dialog box is open in an application.

Buttons below the divider line are in the
Page Setup dialog box (behind Page Setup
Options).
■ 71

CHAPTER 5 ■ USING THE SCRIPT EDITOR

Inserting parameters for script keywords

72
If you click and drag the mouse, OneClick inserts two pairs of coordinates (the
starting point and the ending point of the drag).

See “Click command” on page 172 for more information.

Cursor

Use the Cursor submenu to insert the ID number of a cursor (for use with the Cursor
system variable). The Cursor submenu shows all the cursors available in the System
file and the active application, with the ID number of each cursor. Choosing a cursor
from the submenu inserts its ID number in the script.

See “Cursor system variable” on page 180 for more information.

Date

Use the Date option to insert a date format number for use with the DateTime object’s
DateString property. When you choose Date, the Date Format dialog box appears:
■

CHAPTER 5 ■ USING THE SCRIPT EDITOR

Inserting parameters for script keywords
Choose options in the dialog box to specify the format you want the DateString
property to return, then click OK. OneClick inserts in the script the format number
that corresponds to the options you chose in the dialog box.

See “.DateString” on page 182 for more information.

File

The File option displays a dialog box that lets you choose a file or folder, then inserts
in the script the full path to chosen the file or folder. Use File to insert a path for any
keyword that requires a path parameter.

The button at the bottom of the dialog box shows the currently selected file or folder.

To choose a file, locate the file and then click Select, or click the button at the bottom
of the dialog box. To choose a folder, locate the folder and then click the button at the
bottom of the dialog box.

Date Format pop-up menu
■ 73

CHAPTER 5 ■ USING THE SCRIPT EDITOR

Inserting parameters for script keywords

74
Folder paths always end in a colon (:), file paths do not. For the example dialog box
above, the following path appears in the Script Editor:

"Mac HD:System Folder:Apple Menu Items:"

File Type

The File Type option inserts the four-character file type code (such as “TEXT” or
“PICT”) of a file you choose. When you choose File Type, a directory dialog box
appears.

Choose the file whose file type code you want to insert, then click Open. OneClick
inserts in the script the file type code of the chosen file.

The following keywords can use a file type parameter:

■ AskFile function (page 152)

■ PopupFiles function (page 264)

■ File.Kind (page 202)

Sound

Use the Sound submenu to insert the name of a sound for use with the Sound
command. The Sound submenu lists all the sounds available in the System file and the
active application.
■

CHAPTER 5 ■ USING THE SCRIPT EDITOR

Inserting parameters for script keywords
OneClick inserts in the script the name of the sound chosen from the submenu.

See “Sound command” on page 292 for more information.

Time

Use the Time option to insert a time format number for use with the DateTime
object’s TimeString property. When you choose Time, the Time Format dialog box
appears:

Choose options in the dialog box to specify the format you want the TimeString
property to return, then click OK. OneClick inserts in the script the format number
that corresponds to the options you chose in the dialog box.

See “.TimeString” on page 185 for more information.

Window

The Window submenu contains the names of all windows in the active application.

Time Format pop-up menu
■ 75

CHAPTER 5 ■ USING THE SCRIPT EDITOR

Script compiler error messages

76
Use the Window submenu to quickly insert the name of a window for use with the
Window object or another keyword that requires a window name as a parameter.

See “Window object” on page 305 for more information.

Script compiler error messages

This section lists the possible error messages you may encounter when saving a script
or checking its syntax and the solutions for each problem.

Unknown name

The script compiler doesn’t recognize the name of a keyword or variable name as
you’ve typed it.

■ If a variable name is highlighted, make sure you declared the variable in a Variable
statement before the variable is used in the script.

■ If a script keyword is highlighted, make sure you spelled the keyword correctly.

■ If part of a literal string is highlighted, make sure the string is enclosed in quotes
(").

■ If part of a comment is highlighted, make sure the comment follows a //
(comment) keyword.

Cannot use a function as a command

The script attempted to use a function as if it were a command (the function is outside
of an expression or assignment statement). Make sure you’re assigning the function to
a variable or evaluating it in an expression.
■

CHAPTER 5 ■ USING THE SCRIPT EDITOR

Script compiler error messages
Invalid variable name

The name you specified in a Variable statement cannot be used, probably because it
contains punctuation characters other than an underscore (_) or because it’s the
same name as a script keyword. See the rules for naming variables on page 94.

Missing ‘"’

A closing quote mark (") is missing at the end of a literal string. When this error
occurs, the cursor usually appears on the line below the line that’s missing the quote
mark.

Missing ‘(’ or Missing ‘)’

An opening or closing parenthesis is missing in an expression. The number of left and
right parentheses must match. The cursor appears at the end of the line containing
the error.

Expected “End If,” “End For,” “End handler-name,”, and so on

An End statement is missing from a block of statements, such as an If statement, a For
loop, a Repeat loop, a While loop, or a handler. The cursor is placed on the line
nearest where the missing End statement was expected.

Valid END specifier required

The keyword in an End statement is missing, or the End statement contains
something other than For, While, If, With, Repeat, or a handler name. Make sure
you’ve specified the correct keyword in the End statement at the end of a loop, a
handler, or another block of statements. For example, a While loop must end with an
End While statement.

Unexpected “End”

The compiler found an incorrect or extra End statement.

Line too long

The statement compiles to more than 255 bytes. Try breaking the statement up into
two or more statements to make it shorter.
■ 77

CHAPTER 5 ■ USING THE SCRIPT EDITOR

Script compiler error messages

78
Insufficient memory

There isn’t enough memory available in the system or the active application to
compile the script. If the script is on an application-specific palette, try closing
windows to make more memory available in the active application. If the script is on a
global palette, try closing applications.

AppleScript Error

OneClick cannot connect to the AppleScript scripting system to compile an
embedded AppleScript statement. This usually occurs when AppleScript is not
installed, or when there is not enough memory to initialize AppleScript.

Other AppleScript errors

If AppleScript encounters an error while compiling an embedded AppleScript
statement, AppleScript’s error message appears in the status area where OneClick
messages normally appear. Refer to an AppleScript reference manual for a description
of AppleScript error messages.

Unknown version of script

The script appears to have been created with a version of OneClick that’s newer than
the current version of OneClick you have installed, and the script cannot be
decompiled or run. Normally you shouldn’t ever see this message.
■

Chapter 6

Using the Icon Editor and Icon Search
OneClick includes an Icon Editor you can use to create button icons or to edit icons
taken from other files. You can create 256-color icons of any size up to 32 by 32 pixels.
The Icon Editor lets you create both color and black-and-white versions of the same
icon; OneClick displays the appropriate icon on the button depending on whether
you’re using a color or black-and-white monitor.

Type numbers
to change the
icon's width or
height

Drag below the editing
area's bottom-right corner
to change the icon's size

Click to edit the
icon's color
version

Click to edit the
icon's black &
white version

Click to edit the
icon's mask

Click a tool,
then click or
drag in the
drawing area
to change the
icon

Choose drawing
and erasing
colors from the
pop-up menus

Restore the last
saved version
of the icon

Click or drag in the
editing area to change
the color of pixels

Choose a button icon
to edit (1–4) from the
pop-up menu
■ 79

CHAPTER 6 ■ USING THE ICON EDITOR AND ICON SEARCH

80
. To edit a button’s icon

1 Open the OneClick Editor and click the Icon tab.

2 Select the button whose icon you want to edit.

The button’s icon appears in the drawing area. If the button didn’t previously
have an icon, a blank icon appears instead.

3 Choose which icon (1–4) you want to edit by choosing a number from the Icon
pop-up menu.

A button’s default icon is 1, but each button can store and use up to four different
icons. You can choose which icon appears on a button by setting the button’s
icon in the Button Editor or by setting the button’s Button.Icon property in a
script.

4 Use the Icon Editor’s drawing tools to change the icon image.

Icon Editor tools

The tools let you draw in the drawing area much like a paint program.

Tool Icon Name What it does

Draw color Changes the current draw color used by the pencil, line, fill, and
shape tools. Click to choose a color from the pop-up menu.

If your monitor displays 256 or more colors, hold down the Option
key and click the color pop-up to get a smaller menu of 34 colors
recommended by Apple for use in icons. (This also works for other
OneClick color pop-ups, not just the icon draw color.)

To choose a color not shown in the menu, select Choose Color to
open the Color Picker dialog box. (See “Choosing a custom color”
on page 33.)

Erase color Changes the current erase color used by the eraser and selection
tools. Click to choose a color from the pop-up menu.

Pencil Changes the color of individual pixels in the drawing area. Click the
pencil tool, then click pixels in the drawing area.
■

CHAPTER 6 ■ USING THE ICON EDITOR AND ICON SEARCH
Resizing the icon

If you edit the icon for a new button that didn’t previously have an icon, then the
icon’s default size is the same size as the button. You can change the icon’s size to any
size up to 32 by 32 pixels.

. To resize the icon

■ Type numbers in the Width and Height boxes.

–Or–

1 Move the pointer over the lower-right corner of the drawing area.

Eraser Erases pixels. Click the eraser tool, then click pixels in the drawing
area to erase. The eraser uses the current erase color.

Dropper Changes the current draw color to a color in the drawing area. Click
the dropper tool, then click a color in the drawing area to “suck up”
the color and make it the current draw color. To pick up the erase
color instead, hold down the Option key. Holding down the Option
key with any other tool selected causes the Dropper to appear.

Selection Selects rectangular parts of the drawing area. Click the selection
tool, then drag to select part of the icon. After selecting, you can
drag the selection to move it, Option-drag to create a copy, press
Command-C to copy the selection to the clipboard, or press Delete
to erase the selection. To select the entire icon, press Command-A.

Line Draws line segments. Click the line tool, then drag in the drawing
area to draw lines.

Fill Fills a colored area of the icon with the current draw color. Click the
fill tool, then click a color in the drawing area to fill the area with
color. To fill all pixels of the same color (not just adjacent pixels),
Command-click a color in the drawing area.

Shapes Draws hollow or filled shapes. Click a shape tool, then drag to draw
a shape.

Tool Icon Name What it does
■ 81

CHAPTER 6 ■ USING THE ICON EDITOR AND ICON SEARCH

82
2 When the cursor changes to the resize cursor (), drag to resize the icon.

Tip Resize an icon so that no unused space appears on the right or bottom edges.
Doing so allows the icon to appear centered correctly on the button.

Pasting an icon or picture from the clipboard

You can copy an icon from a Get Info window in the Finder, or copy a graphic from a
graphics program, and then paste the graphic in the Icon Editor.

. To paste a graphic in the Icon Editor

1 Copy a graphic (up to 32 by 32 pixels large) in a graphics program. (To copy a
Finder icon, select the icon and choose Get Info, then click the icon in the Info
window and choose Copy.)

2 Click the Icon Editor’s drawing area to make it active.

3 Press Command-V to paste.

Tip You can also copy an icon from the Icon Editor and paste it into a Get Info
window or another application.

Designing both color and black-and-white icons

Each icon has both a 256-color version and a black-and-white version. The black-and-
white icon appears only on monitors that are set to display fewer than 16 colors (in
the Monitors control panel).

. To edit the black-and-white icon

■ Click the B & W box.

The black-and-white icon appears in the drawing area. The Draw and Erase color
menus show black and white as the only choices.
■

CHAPTER 6 ■ USING THE ICON EDITOR AND ICON SEARCH
If you leave the black-and-white icon empty (all white pixels), then OneClick
approximates a black-and-white version of the color icon for display on the button.
(Light colors change to white, dark colors change to black.) You don’t need to create a
black-and-white icon unless the approximation looks poor.

. To copy the color icon to the black-and-white icon and touch it up

1 Click the Color box to switch to the color version.

2 Drag the sample icon from the Color box to the B & W box.

3 Click the B & W box to switch to the black-and-white version.

4 Use the drawing tools to turn pixels on and off in the black-and-white icon.

Making parts of the icon transparent

An icon’s mask lets you determine which parts of an icon’s image appears on a button
and which parts are transparent, allowing the button’s background color to show
through. Careful mask editing lets you create irregularly-shaped icons and icons that
appear to have holes in them.

When a mask pixel is black, the corresponding pixel in the icon appears on the
button. If a mask pixel is white, then the corresponding icon pixel doesn’t appear.
Following are three examples of how black pixels in different masks affect the same
icon on a medium-gray button.

. To copy the color or black-and-white icon to the mask and touch it up

1 Click the Color or B & W sample box to select it.

2 Drag the icon from either the Color or B & W box to the Mask box.

Full mask (the default) Only half the icon is masked Custom mask (after dragging
the icon to the mask)
■ 83

CHAPTER 6 ■ USING THE ICON EDITOR AND ICON SEARCH

Using Icon Search

84
Dark colors in the icon change to black in the mask, light colors change to white.

3 Click the Mask box to select it.

4 Use the drawing tools to turn pixels on and off in the mask.

Saving changes to an icon

OneClick automatically saves any changes to a button’s icon when you switch to
another button or close the Icon Editor, so you don’t need to manually save it.
However, the changed icon doesn’t appear on the button until you save it.

. To save the icon and update the button (without closing the editor)

■ Press Command-S.

The new icon appears on the selected button.

. To discard changes and restore the original icon

■ Click Revert.

The last saved icon appears in the drawing area.

Using Icon Search

The Icon Search feature lets you use icons from any file that contains icon, cursor, or
picture resources. Icon Search scavenges through folders on your hard disk and
displays a list of icons which you can then drag to palettes and buttons.
■

CHAPTER 6 ■ USING THE ICON EDITOR AND ICON SEARCH

Using Icon Search
. To search for icons

1 In the OneClick Editor window, click the Icon Search tab.

2 Click Select Folder/File.

3 Use the directory dialog box to locate the folder or file you want to search.

The selected item’s name appears in the button below the list box.

4 Click the button below the list box to begin the search.

Drag to resize the
Icon Search
window

Drag an icon to a
button to replace
the button's icon, or
drag to a palette to
create a new button

The path to the
selected file

Select a file to
display its icons
in the icon list

Click to search
a folder for files
containing icons
■ 85

CHAPTER 6 ■ USING THE ICON EDITOR AND ICON SEARCH

Using Icon Search

86
If you selected a folder, Icon Search recursively searches through all the files and
folders within the folder you select. Searching a folder that contains a lot of files
and folders (such as your System Folder) may take a few moments.

A file list appears on the left when the search is complete.

. To copy an icon from a file to a button

1 Click a file in the list to display any icons, cursors, and pictures found in the file.

In some files you may notice that icons appear more than once. These are usually
16- and 256-color versions of the same icon where similar colors are used in each
version.

2 Drag an icon from the Icon Search list to a button or a palette:

■ To create a new button with an icon, drag an icon from the list to an empty
space on a palette.

■ To change the icon of an existing button, drag an icon to a button.

When you use Icon Search to create a new button, OneClick makes the new
button the same size as the icon.

Tip The OneClick Icons file (inside the OneClick Folder in Preferences) contains a
large selection of professionally-designed icons for use on OneClick buttons. Online
services such as America Online are also a good source for icon files.
■

Chapter 7

Using EasyScript
Overview

This chapter shows you how to write scripts for buttons and enhance recorded
scripts. You’ll learn basic scripting techniques using OneClick’s EasyScript scripting
language. Topics covered in this chapter include:

■ About scripting

■ Parts of the EasyScript language

■ Common scripting techniques

■ Testing and debugging a script

■ Specifications and limits

About scripting

OneClick’s ability to record and play back a sequence of actions on the Macintosh is a
powerful feature, because it can save you a lot of time and tedious repetition—letting
you be more productive. OneClick’s robust EasyScript language makes the
sequencing ability even more powerful. Unlike scripts or macros that are simply
recordings of keystrokes and mouse clicks, EasyScript scripts are recorded in a simple
programming language.

At its core, EasyScript is a small language with a simple, easy-to-learn syntax. To this
core, EasyScript adds dozens of commands and functions created specifically to access
and manipulate the Macintosh user interface and operating environment. The
addition of the built-in commands to EasyScript means that many actions that would
take a number of instructions to execute in other scripting or macro software can
usually be expressed with a single EasyScript command or function.
■ 87

CHAPTER 7 ■ USING EASYSCRIPT

Overview

88
At the most basic level, you can record scripts to automate routine tasks, but that’s
only the beginning. When you click a button on a OneClick palette, you’re simply
running an EasyScript script. By learning EasyScript, you can edit and enhance your
recorded scripts to increase their functionality.

Sample EasyScript scripts

While learning EasyScript, you’ll find a good source of example scripts in the pre-
made buttons that come with OneClick. Use the Script Editor to browse or print the
scripts for different buttons. When you’re not sure what a particular keyword does in
a script, refer to this chapter and Chapter 8, “EasyScript Reference.”

How scripting differs from programming

You don’t need to know a programming language to use EasyScript. Although this
chapter does not take a systematic approach to teaching a programming language, it
does teach you what you need to know about EasyScript scripting.

Because of the power of the EasyScript language, the difference between it and a
traditional programming language (such as BASIC, Pascal, or C++) may seem to
blur. Although there are many features that EasyScript shares with traditional
programming languages, there are a few distinct areas in which EasyScript is different.

Ability to create stand-alone applications

Programming languages are designed to let programmers develop stand-alone
applications from the ground up. A typical application, such as a word processor,
consists of thousands of lines of code that may take months or even years to develop.

EasyScript scripts usually perform just a single task or series of tasks within an
application. Compared to a programming language, EasyScript scripts are very short
and to the point; most of the scripts you’ll write may contain no more than a few lines
of EasyScript statements. Scripts that perform simple tasks, such as opening an
application or document, may contain only one EasyScript statement.

Ability to control other applications

EasyScript commands and functions are uniquely designed to interact with an
application’s user interface elements, such as menus, windows, and buttons.
■

CHAPTER 7 ■ USING EASYSCRIPT

Parts of the EasyScript language
A programming language lets you create applications that display user interface
elements, but the language itself doesn’t provide the built-in ability to automatically
interact with those elements.

Ability to create custom or structured data types

In a traditional programming language, the programmer can create new data types
used to store information—often called records or structs, depending on the
language.

EasyScript supports three data types needed to interact with the Macintosh user
interface: number, string, and list, which is a special kind of string data. Lists are
similar to arrays in other languages, but they can also be manipulated as string values.

Parts of the EasyScript language

In this section you’ll become familiar with aspects of the EasyScript language, such as:

■ Statements and keywords

■ Values

■ Commands

■ Functions

■ Comments

■ Variables

■ Expressions and operators

■ Control statements (branching and looping)

■ Objects

■ Handlers

If you’re already familiar with another scripting or programming language, skim this
section to gain an understanding of the differences between EasyScript and other
languages. If you’re new to scripting, pay careful attention to each of the following
sections.
■ 89

CHAPTER 7 ■ USING EASYSCRIPT

Parts of the EasyScript language

90
Statements and keywords

A statement is one line of instructions in a script. A script is made up of one or more
statements, with one statement per line in the script. You write statements using
commands, functions, objects, handlers, and other elements in the EasyScript
language. The names of all the different commands, functions, objects, and
handlers—all words in the EasyScript language—are collectively called keywords.

The following are five statements in an example script. Keywords are highlighted in
boldface.

Message "Hello, world!"
Open (FindFolder "amnu") & "Chooser"
Variable X, MyCount
X = Date 1
MyCount = MyCount + 10

The first two statements contain commands and their parameters. The third statement
declares two variables named X and MyCount. The fourth statement assigns the result
of the Date function to the variable X. The last statement adds 10 to the value of the
MyCount variable.

Values

A value is a series of characters (called a string value) or a number (called a numeric
value). String values can consist of any character, including numbers, symbols, and
punctuation marks. String values must be enclosed in quotation marks when you type
them in a script.

Numeric values are limited to numbers and a minus sign, if needed. Floating-point
numbers (numbers with a decimal fraction) are not supported. A numeric value can
range from –2,147,483,648 to 2,147,483,647.

Following are some examples of values. String values are enclosed in quotation
marks.

29930
—62
"Projects"
"3:00 Meeting"
■

CHAPTER 7 ■ USING EASYSCRIPT

Parts of the EasyScript language
List values

A list value is a special type of string. A list is a series of individual strings separated by
a special character, called the list delimiter. The preset delimiter is the Return
character (<reutrn>). Examples of lists include the following:

"Apple<return>Banana<return>Navel Orange<return>Strawberry<return>Peach"
"9<return>26<return>66<return>7<return>13<return>63"

The first list contains seven string items: Apple, Banana, Navel Orange, and so on. The
second list contains six strings. EasyScript treats numeric characters in a list as strings,
not numbers.

Many EasyScript commands and functions use lists to perform their tasks. For
example, the PopupMenu function (described later) displays a list as a pop-up menu;
each individual string in the list appears as an item in the menu.

You don’t need to insert the <return> tag before the first item or after the last item
in the list, just between each item.

Tip To quickly insert the <return> tag in the Script Editor, press Option-Return.

For more information on how to use lists in your scripts, see “Manipulating lists” on
page 120.

Commands

Commands are words that perform the work of a script. The other language elements
(values, variables, functions, objects, and so on) just let you put the commands
together in more useful ways.

Common commands you might use in scripts include the following:

Command Description

Type Types text or simulates pressing Command keys

SelectMenu Chooses a command from a menu in the menu bar

SelectPopUp Chooses a command from a pop-up menu
■ 91

CHAPTER 7 ■ USING EASYSCRIPT

Parts of the EasyScript language

92
Command examples

Here’s an example script that uses some of the above commands:

Open "Hard Disk:Applications:SimpleText"
SelectMenu "File", "New"
SelectMenu "Style", "Bold"
Type "Status Report — Alan Bird"
SelectMenu "Style", "Plain Text"
Type Return, "Week Ending ", Date
Type Return, Return, Return

The script opens SimpleText, opens a new document, types the status report heading
in bold text, then types the week-ending date in plain text, followed by three carriage
returns.

Parameters

Many commands and functions require one or more parameters. A parameter is a
value you include as part of a statement so the command knows what value to work
with. For example, the Type command requires at least one parameter that specifies
what text or keystrokes to type. The SelectMenu command accepts two parameters:
the first is the name of the menu, and the second is the name of the menu item to
choose.

You can use either spaces or commas to separate multiple parameters. The following
statements are equivalent:

SelectMenu "File", "New"
SelectMenu "File" "New"

SelectButton Clicks a button in a dialog box or window

Open Opens an application, folder, document, or other Finder item

Wait Waits for a certain condition to become true, such as waiting for a
specific window to appear

Variable Declares variables for use in a script

Command Description
■

CHAPTER 7 ■ USING EASYSCRIPT

Parts of the EasyScript language
Functions

Functions are commands that return a value. While commands usually perform some
kind of action, such as choosing a menu item, functions usually just report a value,
such as the current date or time.

Functions can be assigned to variables, used in If statements, or anywhere else a value
of the specified type is expected. Common functions you might use include the
following:

Some functions, such as AskFile and AskList, perform some action (such as displaying
a dialog box) before returning a value. Other functions simply return a value.

Function examples

Here’s an example script that uses the AskFile, Return, and AskButton functions:

Type AskFile "TEXT"
Type Return
Type AskButton "You chose a file.", "Yes, I know", "I goofed"

Comments

A comment is a note to yourself that you type in a script. OneClick ignores any
comments in your scripts. It’s a good idea to include comments in the scripts you
write so that if you write something complicated, you can quickly figure out what the
script does later on.

You use two slashes (//) to mark the beginning of a comment. A comment can appear
on a line by itself or after a statement; a comment always extends to the end of the
line. Here are some examples of comments in a script:

// This is my Hello World script
Sound "Quack" // quack like a duck
Message "Hello, World!" // displays a greeting in a dialog box

Function Description

ListCount Returns the number of items in a list

SubString Returns a portion of a string

Date Returns the current date as a string value
■ 93

CHAPTER 7 ■ USING EASYSCRIPT

Parts of the EasyScript language

94
You can also use the comment marker to “comment-out” statements you don’t want
OneClick to execute while you’re testing a script. Just put the comment indicator at
the beginning of the statement you want OneClick to ignore:

// This is my Hello World script
// Sound "Quack" // quack like a duck
Message "Hello, World!" // displays a greeting in a dialog box

The above script works like the previous version, except it doesn’t play the Quack
sound. When you want to re-enable a statement you commented out, just remove the
comment marker.

Variables

Variables are containers which store a string or number value that can change as a
script runs. In script statements, you can use variables instead of literal values (text or
numbers typed directly in the script).

Before you can use a variable, you must first use the Variable command to declare the
variable’s name. Declaring a variable name lets OneClick recognize the word as a
variable when it appears in your script.

Variables must be named according to these rules:

■ The variable name must start with a letter (A–Z or a–z).

■ The rest of the name can contain letters, numbers, or underscores (_).

■ The name can be up to 255 characters long.

■ The name can’t be the same as an EasyScript keyword or any other type of
variable.

Following are some examples of correct and incorrect variable names:

Variable name Valid?

theText Yes

My_Number_Variable Yes

X Yes

Message No (Message is an EasyScript keyword)
■

CHAPTER 7 ■ USING EASYSCRIPT

Parts of the EasyScript language
When you save a script or check its syntax in the Script Editor, OneClick checks to
make sure the variable names you declared are all valid. If you use an invalid variable
name, the Script Editor displays the message “Invalid variable name” and highlights
the name so you can change it.

Variable names are not case-sensitive. The variable names “thetext”, “TheText”, and
“THETEXT” all refer to the same variable. When you save a script or check its syntax,
OneClick changes the case of variable names to match the case used in the Variable
statement.

The variables you declare assume their type (string or number) the first time they are
assigned a value, so you don’t need to explicitly declare them as string or number
variables like you might do in some programming languages.

Assigning variables

Use the equal (=) operator to assign values to variables:

MyNumberVar = 47024
MyStringVar = "Monday is my favorite day of the week"
FruitListVar = "Apples<return>Oranges<return>Bananas<return>Pears"
WindowListVar = Window.List

As mentioned earlier, variables assume their type when they are initially assigned.
However, you can change the type of a variable by assigning it a value of a different
type. For example, consider the following:

MyStringVar = "Forty Two"
MyStringVar = 42

In the second statement, variable MyStringVar becomes a numeric variable containing
the value 42 instead of a string variable.

The MakeText and MakeNumber functions allow you to interpret a string variable as a
numeric value and vice versa. For example:

MyVar1 = 42
MyVar2 = MakeText MyVar1

num-lines No (contains punctuation other than an underscore)

4files No (starts with a number)

Variable name Valid?
■ 95

CHAPTER 7 ■ USING EASYSCRIPT

Parts of the EasyScript language

96
MyVar1 contains the numeric value 42 and MyVar2 contains the string value “42”.

Note A variable has no value until you assign a value to it. When a variable has no
value, it is considered equal to both the empty string (“”) and zero (0).

Local and global variables

When you declare a variable, you can access that variable only from within the script
in which the variable is defined. This kind of variable is called a local variable because
it can only be accessed locally within a single script; other scripts cannot access the
same variable. Local variables have no value when they are declared and lose their
value when the script ends.

Global variables, unlike local variables, can be shared between scripts in different
buttons. Because they are meant to be shared between different scripts, global
variables do not lose their value when a script ends. When a global variable is declared
and assigned a value in one script, the variable’s value is not re-initialized when it’s
declared in another script.

Global variables do lose their values when the application for which the script was
written quits. For example, if you assign values to global variables in scripts written for
a SimpleText palette, those variables lose their values when you quit SimpleText. The
variables are re-initialized the next time you open SimpleText and run the script.

To access a variable from any script (either on the current palette or from another
palette within the same application), use the Global keyword in the Variable
statement:

Variable Global FavoriteTeam

The above statement declares one global variable, FavoriteTeam. You can now access
FavoriteTeam from any other script that also declares FavoriteTeam as a global variable.
Each script that accesses a global variable must declare it. (Make sure to use the
Global keyword and to spell the variable name the same in each script.) Here are two
scripts (for a pair of buttons) that share a global variable:

// Script #1: This script shows a list box and gets a response
Variable Global FavoriteTeam
FavoriteTeam = AskList "Padres<return>Dodgers<return>Giants", "Pick your favorite."
■

CHAPTER 7 ■ USING EASYSCRIPT

Parts of the EasyScript language
// Script #2: This script shows the result of the AskList function in script #1
Variable Global FavoriteTeam
Message "My favorite team is the " & FavoriteTeam

You can share global variables between scripts on the same palette or between scripts
on different palettes. The only limitation is that you cannot share global variables
between palettes of different applications. For example, if you have a global variable
named PictureName in both an Adobe Photoshop palette and a Microsoft Word
palette, EasyScript treats the variable as two different global variables. This is because
only one application’s palettes are available at a time—when Photoshop is active, only
Photoshop’s palettes are active; the Microsoft Word palettes (including its buttons,
scripts, and therefore variables) are unavailable.

Global variables on global palettes work the same way. A script on a global palette can
access global variables only on other global palettes, not on application-specific
palettes. Likewise, scripts on application-specific palettes cannot access global
variables on global palettes.

Tip for naming global variables

When working with global variables, it’s a good idea to come up with unique variable
names to avoid potential conflicts with global variables in other scripts. For example,
consider a script that relies on the following global value:

Variable Global Num
Num = 16

If another script also has Num declared as global variable, and each script assigns a
different value to Num, then the scripts may not work correctly if Num contains a
value that one of the scripts didn’t expect.

A better strategy is to use local variables, when possible, and change the global
variable names to more unique (but still readable) names. For example, you might
add an abbreviation of the button’s name to the global variable name, so the variable
name is distinct from any global variables declared in other scripts:

Variable Global QH_Num
QH_Num = 16
■ 97

CHAPTER 7 ■ USING EASYSCRIPT

Parts of the EasyScript language

98
Static variables

When you need to store data in a variable that doesn’t go away when the script ends
or when the application quits, use a static variable. Static variables always remember
their values, even when you shut down or restart your computer. (Static variables are
stored on disk in the button’s palette file.)

To declare a static variable, use the keyword Static in the Variable statement.

Variable Static PhoneList
Variable Static Addresses, JobLeads

Static variables are always local to the script in which they are declared. You cannot
declare a variable to be both static and global.

System variables

A system variable is a built-in variable whose value is changed and maintained by
OneClick. System variables behave like functions, except they don’t require
parameters and don’t do any special processing like some functions do. Following are
some examples of system variables:

Some system variables, such as Clipboard and SoundLevel, allow you to change their
value. Other system variables are maintained by OneClick and cannot be changed in a
script.

Here is a sample script that uses the SoundLevel system variable:

Variable CurrentSound
CurrentSound = SoundLevel
SoundLevel = 7
Sound "Quack"
Message "The sound level is " & SoundLevel
SoundLevel = CurrentSound
Sound "Quack"
Message "The sound level is " & SoundLevel

System Variable Description

Clipboard Returns or sets the contents of the Clipboard.

CommandKey True when the Command key is pressed, otherwise False.

SoundLevel Returns the current speaker volume level (0—7) or sets the volume to a
new level.
■

CHAPTER 7 ■ USING EASYSCRIPT

Parts of the EasyScript language
The script stores the value of SoundLevel (the current sound volume) in the variable
CurrentSound. The script then sets the volume to 7, plays a sound, and displays a
message indicating the current sound level. After you click OK in the message box, the
script restores the previous sound volume, plays the sound again and displays
another message box.

Expressions and operators

Values, variables, and functions can be combined into expressions using operators.
The expressions, in turn, can be used anywhere a value is expected.

Arithmetic operators

These operators perform arithmetic on two expressions. In the following examples,
assume that x = 32 and y = 45.

Note Because EasyScript does not support floating-point (decimal) numbers, the
division operator returns the result without the decimal fraction.

Operator Description Example Result

– negation –x –32

+ addition x + y 77

– subtraction x – y –13

* multiplication x * y 1440

/ integer division x / y 0
■ 99

CHAPTER 7 ■ USING EASYSCRIPT

Parts of the EasyScript language

10
Relational operators

Relational operators compare the values of two expressions. If the comparison is true,
the resulting expression has the value 1 (True). Otherwise the resulting expression
has the value 0 (False). In the following examples, assume that x = 32 and y = 45.

You can also use relational operators to compare string values. EasyScript uses the
ASCII sort order for <, >, <=, and >= comparisons. In the following examples,
assume that x = “One” and y = “Click”:

Operator Description Example Result

= equal x = y False (0)

<> not equal x <> y True (non-zero)

> greater than x > y False (0)

>= greater than or equal x >= y False (0)

< less than x < y True (non-zero)

<= less than or equal x <= y True (non-zero)

Operator Description Example Result

= equal x = y False (0)

<> not equal x <> y True (non-zero)

> greater than x > y True (non-zero)

>= greater than or equal x >= y True (non-zero)

< less than x < y False (0)

<= less than or equal x <= y False (0)
0 ■

CHAPTER 7 ■ USING EASYSCRIPT

Parts of the EasyScript language
Logical operators

Logical operators perform logical (Boolean) operations on their operands. The result
of a logical expression is either True (1) or False (0). In the following examples,
assume x = 32 and y = 45.

String operator

The string concatenation operator (&) joins two string values. Use it to glue two
strings together and store the result in a string variable. In the following examples,
assume that Var1= “One” and Var2 = “Click”.

Parentheses

Parentheses change the order of evaluation:

When you save a script or check its syntax, OneClick checks for mismatched
parentheses in expressions. (There should always be an equal number of left and
right parentheses.) If a parenthesis is missing, OneClick displays a Missing ‘(’ or
Missing ‘)’ message and moves the cursor to the line where the parenthesis is missing.

Operator Description Example Result

NOT logical negate NOT (x < y) False (0)

AND logical and (x < y) AND (x > y) False (0)

OR logical or (x < y) OR (x > y) True (non-zero)

Operator Description Example Result

& string concatenation "Today is " & Date "Today is 11/9/99"

Var1 & Var2 "OneClick"

Operator Description Example Result

() parentheses (32 + 45) * 5 385

32 + (45 * 5) 257
■ 101

CHAPTER 7 ■ USING EASYSCRIPT

Parts of the EasyScript language

10
Operator precedence

EasyScript uses the following order of precedence to determine the order in which
parts of an expression are evaluated. Operators of equal precedence (such as + and –
) are evaluated from left to right.

unary +, –, NOT
*, /
+, _
<, >, <=, >=
=, <>
AND
OR
&

Control statements (branching and looping)

EasyScript provides several types of control statements you can use to create
intelligent scripts. Control statements act on the value of an expression and execute
different statements depending on the expression’s value. The control statements in
EasyScript are similar to those found in traditional programming languages:

■ If, Else, Else If, End If

■ For, Next For, Exit For, End For

■ Repeat, Next Repeat, Exit Repeat, End Repeat

■ While, Next While, Exit While, End While

Each set of statements has its own purpose: for conditional execution and decision
making; looping (repeating statements); and conditional looping.

Conditionally executing statements

Use an If…End If statement to execute one or more statements only when a certain
condition is true. All statements between If and End If are executed only if the
condition in the If statement is true. If the condition is false, the statements between
If and End If are skipped. The syntax of the If statement is as follows:

If expression
statements

End If
2 ■

CHAPTER 7 ■ USING EASYSCRIPT

Parts of the EasyScript language
Here’s an example script that uses If and End If to compare the values of two
variables, X and Y:

Variable X, Y
X = 12
Y = 43
If X < Y

Message "X is less than Y"
End If
Sound "Quack"

In the above script, a message box appears only when the value of X is less than Y. If X
is greater than or equal to Y, the Message statement is skipped. Execution always
continues with the Sound statement following the End If statement.

An expression is true if it is a number that is not equal to zero, or a string that is not
equal to the null string (“”). For example, the Sound statement in the following script
will execute if X = 35 or X = “Hello”, but will not execute if X = 0 or X = “” (the
null string).

If X
Sound "Quack"

End If

The Else statement lets you specify alternate statements to execute if the condition in
the If statement is false. The syntax of an If, Else, End If statement is as follows:

If expression
statements

Else
statements

End If

Here’s an example (similar to the previous script) that uses an Else statement.

Variable X, Y
X = 12
Y = 43
If X < Y

Message "X is less than Y"
Else

Sound "Indigo"
Message "X is NOT less than Y"

End If
Sound "Quack"
■ 103

CHAPTER 7 ■ USING EASYSCRIPT

Parts of the EasyScript language

10
In the above script, a message appears if X is less than Y, just as it did in the previous
script. But if X is not less than Y (the condition is false), then the Indigo sound plays
and a different message appears. As before, the Quack sound plays following the End
If statement, regardless of the condition in the If statement.

You can create a series of If statements using one or more Else If statements. Each Else
If statement contains a different expression to evaluate. Here’s the syntax of an If
statement that includes one Else If statement:

If expression
statements

Else If expression
statements

Else
statements

End If

As with a regular If…End If statement, the Else statement is optional.

The sample script below uses an If statement with two Else If statements. To run the
script, you choose a name from a pop-up menu button; the pop-up menu contains
three names (Lucy, Viki, and Erica). The If and Else If statements type a certain mailing
address depending on the value of MyChoice (the name chosen from the pop-up
menu). After one of the mailing addresses is typed, the script finishes by typing a
salutation.

// Get a choice from a pop-up menu
Variable MyChoice
MyChoice = PopupMenu "Lucy<reutrn>Viki<return>Erica"

// Type a different address depending on the value of MyChoice
If MyChoice = "Lucy"

Type "Lucy Coe<return>Deception, Inc.<return>Port Charles, NY<return><return>"
Else If MyChoice = "Viki"

Type "Viki Carpenter<return>The Banner<return>Llanview, PA<return><return>"
Else If MyChoice = "Erica"

Type "Erica Kane<return>Enchantment<return>Pine Valley, PA<return><return>"
End If

// Type the salutation
Type “Dear ", MyChoice, ", <return><return>"

If statements can be nested to create even more complex conditions. For more
information, see “If, Else, Else If, End If commands” on page 228.
4 ■

CHAPTER 7 ■ USING EASYSCRIPT

Parts of the EasyScript language
Repeating a sequence of statements a number of times

Use a Repeat…End Repeat loop to repeat one or more statements a certain number
of times. All statements between Repeat and End Repeat are repeated the number of
times specified by the Repeat parameter. The following script opens, resizes, and
moves new document windows in SimpleText:

// Assign the starting values for the window position
Variable X, Y, HowMany
X = 10
Y = 45
HowMany = AskText "How many new windows?"

// Open and cascade some new windows
Repeat HowMany

SelectMenu "File", "New"
Window.Location = X, Y
Window.Size = 300, 250
X = X + 20
Y = Y + 20

End Repeat
Message "All done."

This script uses the AskText function to display a dialog box and request the number
of new windows to open. The result is stored in the HowMany variable, which is used
as the parameter to the Repeat command. If HowMany is greater than zero, then the
script executes the statements between Repeat and End Repeat the number of times
specified by HowMany, then continues with the statement following End Repeat. If
HowMany is zero or a negative number, the Repeat loop is skipped entirely and
execution continues with the statement following End Repeat.

To improve readability, the statements between Repeat and End Repeat are indented
automatically when you check or save the script.

Repeating a sequence of statements using a counter

A For…End For loop is similar to a Repeat…End Repeat loop, except you supply a
variable that OneClick increments each time through the loop. You can use this
counter variable in statements within the For loop, perhaps as an index into a list
value. (See Manipulating lists on page 120.)
■ 105

CHAPTER 7 ■ USING EASYSCRIPT

Parts of the EasyScript language

10
A For…End For loop in EasyScript is very much like a For…Next loop in many
programming languages. The syntax for a For…End For loop is as follows:

For index-variable = start To end
statements

End For

Index-variable is a variable you declare at some point before the beginning of the For
loop. You don’t need to initialize its value. Start is a numeric value (or expression)
that indicates the starting value for index-variable in the beginning of the loop. Each
time through the loop, OneClick adds 1 to index-variable and then compares the
new value with end, a numeric value (or expression). When index-variable is greater
than end, the loop terminates and execution continues with the statements following
End For. Here’s an example:

Variable X
For X = 1 to 5

Message X
End For

The first time through the loop, X equals 1 (the value of start). OneClick increments X
each time through the loop until X equals 5 (the value of end). The result of this script
is a series of five message boxes, displaying the numbers 1 through 5.

Start can be any number; it doesn’t need to be 1. End must be greater than start,
however. (You cannot loop backwards, counting down from end to start.)

For more information, see “For, Next For, Exit For, End For commands” on page 219.

Repeating statements while a condition is true

Use a While…End While loop to repeat one or more statements while a certain
condition is true. The following script loops through all of the open windows in an
application, saving and closing each document until there are no more open
windows.

While (Window.Name <> "")
SelectMenu "File", "Save"
CloseWindow

End While
Message "All done."

The script works by repeatedly checking the Window.Name property, which is equal
to the empty string (“”) if there are no open windows.
6 ■

CHAPTER 7 ■ USING EASYSCRIPT

Parts of the EasyScript language
The While loop works as follows: The expression following the While command
(Window.Name <> “”) is tested. If it is true (Window.Name is not equal to the
empty string), the statements between While and End While are executed. Then the
expression is re-tested, and if true, the body of the loop is executed again. When the
expression becomes false (Window.Name equals the empty string) the loop ends, and
execution continues at the statement following End While.

In a While…End While loop, it’s possible to use an expression in the While statement
that never evaluates to false. This causes an endless loop—the statements between
While and End While continue to repeat and the loop never ends. You can press
Command-period to stop a script that’s stuck in an endless loop.

To improve readability, the statements between While and End While are indented
automatically when you check or save the script.

For more information, see “While, Next While, Exit While, End While commands” on
page 304.

Pausing a script for a specified period of time

Use the Pause command to wait for a certain duration. Pause accepts one parameter,
the number of 1/10ths of a second to wait:

// Wait 10 seconds between saving the file and quitting
SelectMenu "File", "Save"
Pause 100
SelectMenu "File", "Quit"

In the example script, Pause waits 10 seconds (100/10ths of a second) before quitting
an application. While the script is paused, you can press Command-period to stop and
cancel the script.

Pausing a script until a condition is true

When you want a script to stop running until some action occurs in the application
(such as waiting for a certain window to appear), use the Wait command to check for
a condition:

// Open our e-mail program, then open the "In Basket" window and wait for it to appear.
Open "Macintosh HD:Applications:E-mail"
Type Command "I"
Wait (Window.Name = "In Basket")
■ 107

CHAPTER 7 ■ USING EASYSCRIPT

Parts of the EasyScript language

10
// The "In Basket" window appeared, so let’s click the "Check Mail" button
Button "Check Mail"

You can use any logical expression in a Wait statement. The Wait command evaluates
the expression repeatedly until the result is True (1), then the script resumes running.

Note that you have control of the application while the Wait statement is waiting for
something to happen. By using this feature, you can create interactive scripts in which
the script does something, stops and waits for you to do something, then continues
doing something else when you’re done. Here is a sample script that displays the
Open dialog box, waits for you to open a document, then prints the document when
the document window appears:

Variable oldWindowCount
oldWindowCount = Window.Count
SelectMenu "File", "Open*"
Wait ((Window.Count) = (oldWindowCount + 1))
SelectMenu "File", "Print*"
SelectButton "Print"

The script first declares a variable, oldWindowCount, and sets that variable equal to
the number of windows currently open. (Window.Count returns the number of open
windows in an application.) The SelectMenu command chooses Open from the File
menu, causing a directory dialog box to appear.

The Wait command then sits and waits for another window to appear; it does this by
checking to see if the number of open windows is one greater than the number
previously stored in oldWindowCount. While the script is waiting, you can use the
directory dialog box to locate and select a file to open. When the window for the
opened document appears, the number of windows will then equal oldWindowCount
+ 1, allowing the script to continue with the SelectMenu statement following the Wait
statement.

If the expression in the Wait statement always stays False (0) and never changes to
True (1), the script will appear to hang—it just keeps evaluating the Wait expression
endlessly. To cancel a hung script, press Command-period.

For more information, see “Wait command” on page 303.
8 ■

CHAPTER 7 ■ USING EASYSCRIPT

Parts of the EasyScript language
Stopping a script before it ends normally

Use the Exit command when you want to immediately stop the execution of a script
and ignore all remaining script statements. The following is a script that will either
stop short or continue executing depending on whether a certain window is active:

If (Window.Name <> "In Basket")
Exit

End If
SelectMenu "Mail", "Sort Mail", "by Date"
Sound "Quack"
Message "You have mail."

The script first checks to see if the In Basket window is the active window in an e-mail
program. If In Basket isn’t the active window, the Exit statement causes the script to
end (no other statements are executed). If In Basket is the active window, the script
continues with the SelectMenu statement (following End If) and continues to the end
of the script.

Objects

An object is a type of data with several properties that describe the object. Think about
a physical, real-life object, such as a banana: properties that might describe a banana
object include size, color, weight, ripeness, flavor, and so on.

You can set or retrieve the value of object properties using EasyScript statements. The
syntax for doing so is as follows:

Object(specifier).Property = value // assigns a value to an object’s property
value = Object(specifier).Property // assigns an object’s property to a value

Using a pair of bananas as an example, you can access the properties of the bananas
and assign the properties to variables. If bananas actually supported scripting, you
might also assign values to their properties. Assume you have two bananas named
Chiquita and Dole:

Variable Size1, Size2, Weight1, Weight2

Size1 = Banana("Chiquita").Size
Size2 = Banana("Dole").Size
■ 109

CHAPTER 7 ■ USING EASYSCRIPT

Parts of the EasyScript language

11
If Size1 > Size2
Message "Chiquita is larger than Dole"

Else
Message "Dole is larger than Chiquita"

End If

Banana("Chiquita").Ripeness = "Fresh"
Banana("Dole").Ripeness = Banana("Chiquita").Ripeness

In the above example, Banana is the object type. “Chiquita” and “Dole” are the
specifiers, the names of the Banana objects. The script compares the Size property of
each banana, then sets the Ripeness property of each banana to “Fresh”.

Like real-life objects, OneClick objects have properties that describe their contents or
appearance. For example, a Window object has Height and Width properties that tell
you the dimensions of a window on the screen.

// set the width of the window named "Document1" to 540
Window("Document1").Width = 540

// set the height of the window named "Checkbook" to 300
Window("Checkbook").Height = 300

OneClick supports the following object types:

Object type Description

Button A button on a OneClick palette

DialogButton A button or checkbox in a dialog box or window

File A file on disk

Menu A menu in the menu bar

Palette A OneClick button palette

Process A running application

Screen A monitor connected to your Mac

Volume A mounted disk, CD-ROM, or file server volume

Window A window in the active application
0 ■

CHAPTER 7 ■ USING EASYSCRIPT

Parts of the EasyScript language
Specifying an object

An object specifier identifies which object a statement refers to. If you omit the
specifier, OneClick assumes you’re specifying the active, or default, object. Which
object is considered the default object depends on the type of object you’re working
with. In the case of a Window object, the default object is the active (frontmost)
window.

// set the width of the active window to 540
Window.Width = 540

// set the height of the active window to 300
Window.Height = 300

The following table summarizes the default objects for each object type.

Setting and retrieving object properties

As you saw earlier, you can get and set the values of properties, much like you do with
variables. The key difference between a property and a variable is that properties are
dynamic. When you get a property’s value, the value returned is the property’s value
at the time the statement is executed. When you assign a value to a property, the
object itself changes to match the property’s new value.

// set the width of the active window to 540
Window.Width = 540

Object type Default object if no specifier given

Button The button containing the active script

DialogButton (No default)

File (No default)

Menu (No default)

Palette The palette containing the active script

Process The active application

Screen The main (menu bar) screen (if you have more than one
monitor connected)

Volume The startup disk

Window The active (frontmost) window in the active application
■ 111

CHAPTER 7 ■ USING EASYSCRIPT

Parts of the EasyScript language

11
// set the height of the active window to 300
Window.Height = 300

When you run the above script, you’ll see that the active window’s size actually
changes as each statement executes.

Manipulating many properties at once

When you get or set the values of several properties for the same object, you can use a
With statement to specify the object just once, which simplifies the script and reduces
the amount of typing required. The following script sets four different properties of a
Button object.

With Button("E-mail")
.Color = 43
.Width = 60
.Height = 22
.Text = "Check E-mail"

End With

The above script is functionally the same as the following script, written the long way.

Button("E-mail").Color = 43
Button("E-mail").Width = 60
Button("E-mail").Height = 22
Button("E-mail").Text = "Check E-mail"

Telling an object to do something

A message tells an object to perform some kind of action. To continue our banana
analogy, two possible messages for a Banana object might be Peel and Ripen.

Banana("Chiquita").Peel
Banana("Dole").Ripen

The first statement causes the Chiquita banana to peel itself. The second statement
causes the Dole banana to ripen, possibly by incrementing the banana’s Ripeness
property.

The Process (running application) object lets you use the Quit message to tell an
application to quit itself.

// quit the active application
Process.Quit
2 ■

CHAPTER 7 ■ USING EASYSCRIPT

Parts of the EasyScript language
// quit SimpleText
Process("SimpleText").Quit

The Palette and Button objects each allow you to create and delete palettes or buttons
on the fly, using the New and Delete messages. This is an advanced feature that lets
you create dynamic palettes and buttons—for example, you can write a script that
creates buttons for all the active applications. When you quit an open application or
launch a new one, the script can create a new button or delete an old one as
appropriate. (The Task Bar included with OneClick does just that.)

To create a new palette, use the New message. A newly-created palette is hidden, so
you’ll need to set its Visible property to 1 to make it appear.

The optional Global modifier lets you create a global palette.

// create a new application palette named My Palette
Palette("My Palette").New
Palette("My Palette").Visible = 1

// create a new global palette named Global Controls
Palette("Global Controls").New Global
Palette("Global Controls").Visible = 1

You can also use the New message to create new, blank buttons on a palette. A newly-
created button uses the default button properties from the Button Editor, except it’s
invisible (just like a new palette). This lets you set all the button’s properties (color,
size, location, and so on) before you make the button visible.

Here’s a script that creates a row of five buttons and sets their properties. The row of
buttons appears in the upper-left corner of the palette.

// create a row of five new, blank buttons
// the buttons are named "1" to "5"
■ 113

CHAPTER 7 ■ USING EASYSCRIPT

Parts of the EasyScript language

11
Variable X
For X = 1 to 5

Button(MakeText X).New
With Button(MakeText X)

.Color = 43

.Width = 22

.Height = 22

.Top = 1

.Left = (X – 1) * 23

.Visible = 1
End With

End For

To delete a button or palette, use the Delete message.

// permanently delete the palette named Switcher
Palette("Switcher").Delete

// permanently delete the button named Temp
Button("Temp").Delete

Supported object properties and messages

All objects support multiple properties, and many objects have properties with the
same names. You can get and set the values of most properties; however, some
properties are read-only, meaning you can’t set their value. For example, Window and
Palette objects each have a .Name property containing the name that appears in the
window or palette’s title bar. You can set the .Name property of a Palette object to
change the name in a palette’s title bar, but you can’t do the same for a Window
object—you cannot change the name of a window.

The .Size and .Location properties are write-only—you can set their values, but you
can’t retrieve them, because these properties contain a pair of values instead of a
single value.

Window.Size = 540, 300
Window.Location = 50, 50

To get an object’s .Size property, get the .Height and .Width properties instead; to get
an object’s .Location property, get the .Top and .Left properties.

Some objects have the same property, but the property’s meaning is different
depending on the object. File and Button objects each have a .Text property, for
example; for the Button object, the .Text property contains the text that appears on
4 ■

CHAPTER 7 ■ USING EASYSCRIPT

Parts of the EasyScript language
the button. But for a File object, the .Text property contains the text in the specified
file.

The following table summarizes the properties and messages available for each object.

Properties
& Messages

 O
b

je
ct

s

 B
ut

to
n

 D
at

eT
im

e

 D
ia

lo
gB

ut
to

n

 F
ile

 M
en

u

 P
al

et
te

 P
ro

ce
ss

 S
cr

ee
n

 V
ol

um
e

 W
in

do
w

.Append m

.Border r/w

.Busy r/o

.Checked r/o r/o

.Collapsed r/w

.Color r/w r/w r/w

.Count r/o r/o r/o m r/o r/o r/o r/o r/o

.CreationDate r/o

.Creator r/w r/o

.CursorScreen r/o

.CursorX r/w

.CursorY r/w

.Data r/w

.DateSerial r/o

.DateString r/o

.Day r/o

.Delete m m m

.Depth r/w

.Drag m m

.Eject m

.Enabled r/o r/o

.Exists r/o r/o r/o r/o r/o r/o r/o r/o r/o

.FileVersion r/o

.Folder r/o

.Free r/o r/o

Key: r/w=Read/write r/o=Read-only w/o=Write-only m=Message
■ 115

CHAPTER 7 ■ USING EASYSCRIPT

Parts of the EasyScript language

11
.Front m m m

.Grow m

.Height r/w r/o r/w r/o r/w

.Help r/w

.Hour r/o

.Icon r/w

.IconAlign r/w

.Index r/w r/o r/o r/o r/o r/o r/o

.InMenu r/w

.IsGlobal r/w

.KeyShortCut r/w

.Kind r/w r/o r/o

.KindString r/o

.Left r/w r/w r/o r/w

.List r/o r/o r/o r/o r/o r/o r/o r/o

.Location w/o w/o w/o

.Locked r/w

.MainScreen r/o

.Maximum r/o

.Minute r/o

.Mode r/w

.ModificationDate r/o

.Month r/o

.Name r/w r/o r/w r/o r/w r/o r/o r/o

.New m m

.NewFolder m

.Original r/o

.PICT w/o

.Quit m

Properties
& Messages

 O
b

je
ct

s

 B
ut

to
n

 D
at

eT
im

e

 D
ia

lo
gB

ut
to

n

 F
ile

 M
en

u

 P
al

et
te

 P
ro

ce
ss

 S
cr

ee
n

 V
ol

um
e

 W
in

do
w

Key: r/w=Read/write r/o=Read-only w/o=Write-only m=Message
6 ■

CHAPTER 7 ■ USING EASYSCRIPT

Parts of the EasyScript language
For more detailed information about objects and their associated properties and
messages, refer to the descriptions of each object in Chapter 8, “EasyScript
Reference.”

.Record r/w

.Script r/w

.Second r/o

.Selection r/w

.SendAE m

.Size w/o r/o w/o r/o r/o w/o

.Text r/w r/w

.TextAlign r/w

.TextColor r/w

.TextFont r/w

.TextSize r/w

.TextStyle r/w

.TimeSerial r/o

.TimeString r/o

.TitleBar r/w r/o

.Top r/w r/w r/o r/w

.Unmount m

.Update m m m m m

.Visible r/w r/w r/w r/w r/w

.Weekday r/o

.Width r/w r/w r/o r/w

.Window r/o

.Year r/o

.Zoom r/w

Properties
& Messages

 O
b

je
ct

s

 B
ut

to
n

 D
at

eT
im

e

 D
ia

lo
gB

ut
to

n

 F
ile

 M
en

u

 P
al

et
te

 P
ro

ce
ss

 S
cr

ee
n

 V
ol

um
e

 W
in

do
w

Key: r/w=Read/write r/o=Read-only w/o=Write-only m=Message
■ 117

CHAPTER 7 ■ USING EASYSCRIPT

Parts of the EasyScript language

11
Handlers

A handler is a series of statements that run when a specific event occurs, such as when
you click the button or when you drag a Finder icon to the button.

The syntax for writing a handler is as follows.

On HandlerName
statements

End HandlerName

Statements inside a handler are run only when the event associated with the handler
occurs. A script can contain more than one handler to respond to different kinds of
events. The following script contains three common handlers: Startup, Scheduled,
and DragAndDrop.

// these statements run only once when the application starts up
On Startup

Sound "Wild Eep"
Schedule 100

End Startup

// these statements run every 10 seconds after the Schedule 100 command runs
On Scheduled

Sound "Quack"
End Scheduled

// these statements run only when a Finder icon is dragged to the button
On DragAndDrop

Sound "Sosumi"
Message GetDragAndDrop

End DragAndDrop

// this is the default handler—these statements run only when you click the button
Sound "Indigo"
Message "I’ve been clicked!"

The default handler for a script is the MouseUp handler. You don’t need to explicitly
write a MouseUp handler when writing a script; statements not in any handler are
assumed to be in a MouseUp handler. The MouseUp handler runs whenever you click
and release the mouse on a button.

The exception to this rule is when the script contains a PopupMenu, PopupPalette, or
PopupFiles command. Because these commands require you to hold down the mouse
button while you choose something from the popped-up menu or palette, the default
8 ■

CHAPTER 7 ■ USING EASYSCRIPT

Common scripting techniques
handler becomes MouseDown instead of MouseUp. You don’t need to explicitly write
a MouseDown handler; if the script contains PopupMenu, PopupPalette, or
PopupFiles, the script automatically runs when you click (but before you release) the
mouse on a button.

The following table summarizes the handlers that OneClick supports.

See the descriptions of individual handlers in Chapter 8, “EasyScript Reference,” for
more information about each handler.

Common scripting techniques

This section shows you how to perform certain tasks that you can use in a variety of
different scripts. You’ll learn how to use different commands together in new ways,
letting you create even more powerful and useful buttons for your palettes.

Handler Description

DragAndDrop Executed when a Finder icon or text clipping is dragged and dropped on the
button

DrawButton Executed when OneClick draws or redraws the button

MouseDown Executed when you click the mouse on a button, but before you release the
mouse

MouseUp Executed when you click and release the mouse on a button

Scheduled Executed when a Scheduled event occurs (initiated with the Schedule command)

Startup Executed when any of the following occur:

• the application starts up (for global palettes, Startup handlers
execute after the computer starts up)

• a button assigns a script containing a Startup handler to another
button

• you edit a script containing a Startup handler and then close the
OneClick Editor window

• you import a palette that contains a Startup handler in one of its
scripts

• you copy a button that contains a Startup handler from a palette or
the Button Library to another palette
■ 119

CHAPTER 7 ■ USING EASYSCRIPT

Common scripting techniques

12
Many of the examples in this section are taken from the actual scripts included with
OneClick. For more information about the particular commands described in this
section, see Chapter 8, “EasyScript Reference” in this manual.

Finding the checked item in a menu

You can use the Menu object to determine which item in a menu is checked, if any.
Here’s an example script that sets the button’s text label to the font name that’s
checked in the Font menu of a word processor.

On Startup
Schedule 5

End Startup

On Scheduled
Menu.Update
Button.Text = Menu("Font").Checked

End Scheduled

The Menu object’s .Checked property returns a list of checked items in the specified
menu. Only one font is selected at a time, so the .Checked property returns the name
of the checked font. If no menu items are checked, .Checked returns the empty string
(“”).

The script example is a scheduled script that runs once every half second. (See
Scheduling a script to run periodically on page 136.) The statement that does all the
work is the Button.Text statement: Button.Text changes the text label of the button to
the value of the Menu.Checked property, which is the checked font name. The script
runs every half second so that as you click different sections of text that use different
fonts, the button’s text label is continually updated with the selected font name.

Some applications don’t update the checkmarks and enabled/disabled status of menu
items until you pull down a menu, which would cause .Checked to give incorrect
results. The Menu.Update statement forces the application to update its menus before
.Checked looks for checked menu items. For applications that do update their menus
normally, you don’t need to use Menu.Update.

Manipulating lists

OneClick provides a lot of versatility through the use of the list data type, since you
can treat a list value as both a single string and as a collection of strings. Several
0 ■

CHAPTER 7 ■ USING EASYSCRIPT

Common scripting techniques
commands and functions let you create lists and access list elements as if the list were
an indexed array. Also, some objects return a list of items as an object property: for
example, Process.List returns a list of active applications, and Window.List returns a
list of all open windows.

Accessing items in a list

The ListItems function lets you get individual items out of a list. ListItems returns the
list item at the numeric position you specify. In the following example, a message box
displays the second item in the list (Banana).

Variable fruitList, theFruit
fruitList = "Apple<return>Banana<return>Orange"
theFruit = ListItems fruitList, 2
Message theFruit

The ListCount function returns the number of items in a list. Using this information,
you can write a For loop to loop through every item in a list. The following script
loops through all the fruits in a list and displays each fruit in a message box.

Variable fruitList, fruitCount, theFruit, X
fruitList = "Apple<return>Banana<return>Orange<return>Strawberry<return>Peach"
fruitCount = ListCount fruitList
For X = 1 to fruitCount

theFruit = ListItems fruitList, X
Message theFruit

End For

Accessing items in file paths and other types of lists

A list is usually a series of substrings separated by <return> (the Return character).
By changing the ListDelimiter system variable, you can use list values to work with
other types of lists, not just lists containing one-line strings. For example, the
following script displays a directory dialog box from which you can select a file. It
■ 121

CHAPTER 7 ■ USING EASYSCRIPT

Common scripting techniques

12
then displays three messages showing the full path of the chosen file, the file’s name,
and the name of the volume it’s on.

Variable thePath theDisk theFileName
thePath = AskFile
ListDelimiter = ":"
theDisk = ListItems thePath, 1
theFileName = ListItems thePath, –1 // –1 gets the last item in the list
Message "The complete path is: " & thePath
Message "The volume name is: " & theDisk
Message "The file name is: " & theFileName

The script changes the ListDelimiter value, which is normally <return>, to the colon
(:) character. Because paths use colons to separate folder and file names, you can treat
a path as a list of items. The first item in the list is the volume or disk name and the
last item is the file name. Other items between the first and last items (if any) are
folder names.

Another useful feature is the ability to access a word in a sentence. A sentence is just a
list of words separated by space characters.

Variable theSentence
theSentence = "Bats are not rodents, Dr. Meridian."
ListDelimiter = " " // space character
// Display a message box containing the word "Bats"
Message ListItems theSentence, 1

Creating multi-dimensional lists

Using the ListDelimiter system variable, it is possible to have lists of lists. This allows
you to use lists as multi-dimensional arrays or lists of records.

For example, if you want a list of names, telephone numbers, and ages, separate each
record in the list with a Return character and each field within a record with a slash (/)
character. To get an individual record out of the list, use the Return delimiter. After
you have the record, change the delimiter to a slash (/) to extract each field of the
record. If you put the name as the first field in the record, you can sort the records by
name (make sure the delimiter is Return before sorting).

// Define a list.
Variable myList, Record, Telephone
myList = "Oberrick, J./555-2708/22<return>Renstrom, R./555-5721/25<return>Bird,
A./555-6020/29"
2 ■

CHAPTER 7 ■ USING EASYSCRIPT

Common scripting techniques
// Sort by name. ListDelimiter is Return by default.
myList = ListSort myList

// Get the telephone number of the 2nd record.
Record = ListItems myList, 2
ListDelimiter = "/"
Telephone = ListItems Record, 2
ListDelimiter = Return
Message Telephone

Following is a brief summary of the commands, functions, system variables, and
object properties that support lists. For more information about each item, see the
appropriate section in Chapter 8, “EasyScript Reference.”

Keyword Description

AskList Displays a list in a list box and returns a list of the selected item(s).

GetDragAndDrop Returns a list of paths when multiple Finder items are dropped on a button.

GetResources Returns a list of resources of the specified resource type (sound, font, and so
on).

ListCount Returns the number of items in a list. Useful for accessing the last item in a list,
or for processing items in a list by starting with the last item and ending with
the first.

ListDelimiter Sets or gets the character used to separate items in a list. The default list
delimiter is <return>.

ListItems Returns (as a list) one or more items from another list. Lets you access (by
number) individual items in a list.

ListSort Alphabetically sorts all items in a list.

ListSum Adds together all numbers in a list and returns the numeric result.

Button.List Returns a list of buttons on the specified palette, or on the palette containing
the script if no palette is specified.

DialogButton.List Returns a list of buttons, radio buttons, and checkboxes in the active window
or dialog box.

File.List Returns a list of files or folders in the specified folder, or files in the current
folder if no folder is specified.
■ 123

CHAPTER 7 ■ USING EASYSCRIPT

Common scripting techniques

12
Creating pop-up menu buttons

Many of the pre-made OneClick buttons behave as pop-up menus. You can create
your own pop-up menu buttons using the PopupMenu function. PopupMenu accepts
a list of menu items as a parameter and returns the chosen item as a string. A dash (–)
in the list appears as a divider line in the menu.

This sample button uses the built-in pop-up menu border style and the button’s text is
“Personality”.

Variable theChoice
theChoice = PopupMenu "Viki<return>–<return>Niki<return>Jean<return>Tori"
Message "You chose " & theChoice

update screenshot to reflect script change

When you choose an item from the pop-up menu, the text of the item chosen is
assigned to the variable theChoice. The script continues by showing a message box
containing the item you picked. If you don’t choose an item from the menu, then
PopupMenu returns the empty string (“”).

When you run a script that contains the PopupMenu function, the pop-up menu
appears while you hold the mouse down on the button. Any statements that appear
before the PopupMenu function execute normally, so it’s a good idea to keep the
number of statements prior to the PopupMenu statement to a minimum. Doing so
allows the menu to pop up more responsively.

Menu.List Returns a list of menu items in the specified menu, or a list of menus in the
menu bar if no menu is specified.

Palette.List Returns a list of global and application palettes available in the active
application.

Process.List Returns a list of all open applications.

Window.List Returns a list of all visible, named windows. (Hidden windows and windows
without a name don’t appear in the list.)

Keyword Description
4 ■

CHAPTER 7 ■ USING EASYSCRIPT

Common scripting techniques
You can also use a list function or property (such as File.List) to return a list for the
PopupMenu function to use. Here’s a script that shows a pop-up menu of all the files
in the Control Panels folder.

Variable theChoice
theChoice = PopupMenu File(FindFolder "ctrl").List
Open (FindFolder "ctrl") & theChoice

In this example, File.List returns a list of all the files in the Control Panels folder
(FindFolder returns the path to the Control Panels folder). Choosing a file from the
pop-up menu assigns the chosen file name to the variable theChoice; the Open
command then opens the chosen file in the Control Panels folder.

Getting input while a script runs

Several functions let you add dialog boxes to your scripts to get input during script
execution.

The Script Editor’s online help and Chapter 8, “EasyScript Reference,” show examples
of how you can use these functions in your own scripts.

Accessing the Clipboard

The Clipboard system variable lets you access the contents of the Clipboard. The
benefits of being able to access the Clipboard contents from a script include the
following:

■ storing the Clipboard contents in variables

■ assigning a new value to the Clipboard

■ manipulating the Clipboard contents using commands and functions

To do this in a script Use this function

Display a message with one to four buttons and return the button clicked AskButton

Display a message with an edit box and return the text typed in the box AskText

Display a message with a list box and return the selected item(s) AskList

Display a directory dialog box and get the path of the chosen file or folder AskFile
■ 125

CHAPTER 7 ■ USING EASYSCRIPT

Common scripting techniques

12
Manipulating the Clipboard contents

By using EasyScript’s commands and functions to manipulate the Clipboard variable,
you can easily add new functionality to an application. Here’s an example script for a
Sort Lines button you can use in a word processor:

Variable UnsortedLines SortedLines
SelectMenu "Edit", "Copy"
UnsortedLines = Clipboard
SortedLines = ListSort UnsortedLines
Clipboard = SortedLines
SelectMenu "Edit", "Paste"

The script works by copying the current selection (a few lines of text) to the
Clipboard. The UnsortedLines variable stores the contents of the Clipboard, which the
ListSort function sorts alphabetically. The result of the ListSort function (the sorted
lines of text) is stored in the SortedLines variable. To put the sorted lines on the
Clipboard, the script simply assigns the SortedLines variable to the Clipboard variable.
The last statement pastes the contents of the Clipboard into the active document,
replacing the selection of unsorted text lines with the sorted text lines.

You could achieve the same results from the previous script by sorting the Clipboard
text directly:

SelectMenu "Edit", "Copy"
Clipboard = ListSort Clipboard
SelectMenu "Edit", "Paste"

Storing Clipboard data in static variables

Assigning the contents of the Clipboard to a static variable lets you create a somewhat
“permanent” Clipboard. Consider the following script:

Variable Static ClipContents
If OptionKey

SelectMenu "Edit", "Copy"
ClipContents = Clipboard
Exit

End If
Clipboard = ClipContents
SelectMenu "Edit", "Paste"

When you select some text or graphics and Option-click the button, the script copies
the current selection to the Clipboard and stores the contents in ClipContents, a static
variable. When you click the button without the Option key, the script puts the
6 ■

CHAPTER 7 ■ USING EASYSCRIPT

Common scripting techniques
ClipContents variable back on the Clipboard and then pastes it into the active
application. Because the Clipboard is stored in a static variable, you can go back and
access it any time, even after cutting or copying other material.

The script’s usefulness becomes even more apparent when you duplicate the button
containing the script several times. In the ManyClip palette at left, each of the eight
Clipboard buttons contains a copy of the above script. Because each button has its
own local, static ClipContents variable, the palette effectively gives you eight separate
Clipboards—letting you store different selections of text, graphics, or other data in
each button. To set the contents of a button’s Clipboard, select some text or other
material in a document, then Option-click the button. To paste a button’s Clipboard
contents into a document, simply click the button.

Using public and private Clipboard formats

In certain applications, you’ll need to use the ConvertClip command before accessing
data on the Clipboard. Applications that store Clipboard data in a private format
normally convert their Clipboard’s contents when you switch applications; the
Clipboard data is converted to public format that’s usable by other applications.
Because an EasyScript script may need to access the Clipboard’s data without
switching applications, the ConvertClip command tells the application to convert the
Clipboard data to a public format as if you were about to switch to another
application.

If the Clipboard system variable doesn’t appear to contain the correct information
when you access it, try using a ConvertClip statement before the Clipboard statement:

SelectMenu "Edit", "Copy"
ConvertClip
ClipContents = Clipboard

For more information, see “Clipboard system variable” on page 174 and “ConvertClip
command” on page 179.

Creating tear-off palettes

Use the PopupPalette command to create pop-up and tear-off palettes. When a
button’s script contains the PopupPalette command, clicking the button displays the
specified palette as a pop-up palette.

PopupPalette "System Folders"
■ 127

CHAPTER 7 ■ USING EASYSCRIPT

Common scripting techniques

12
The PopupPalette command takes one parameter, the name of the palette to display.
The above script pops up the System Folders palette when you click the button. You
can choose a button from the pop-up palette, or tear the palette off into a separate
palette by dragging away from the pop-up palette.

Calling scripts as subroutines

When you click a button to run a script, OneClick normally executes only the
statements contained in the button’s script. A single script works as a self-contained
program. You can use the Call command to run scripts in other buttons, either on the
same palette or on a different palette. When a called script finishes running, the
calling script resumes executing with the statement following the Call statement.

// This is the main script; it calls "PlaySounds" as a subroutine
If Menu("Mail", "Read New Mail").Enabled

Call "PlaySounds"
Message "You have new mail."

Else
Message "No mail."

End If

// This is the subroutine script in the button named "PlaySounds"
// The script plays three sounds and can be called by any other script
Sound "Sosumi"
Sound "Eep"
Sound "Indigo"

Calling scripts as subroutines lets you create large, complex scripts that are broken
down into smaller, modular pieces. Once you’ve written a subroutine script, any other
script can call the subroutine with just one Call statement—you don’t need to copy
and paste the entire subroutine into every script that uses it. When you make changes
to the subroutine script, you don’t need to make any changes to the scripts that call
the subroutine.

Calling scripts as functions

EasyScript doesn’t let you write functions that actually return a value when called, but
you can easily mimic functions by using subroutines and global variables. To pass
parameters to a function script, declare the same global variables in both the function
script and the script that calls it. To simulate a return value, declare another global
8 ■

CHAPTER 7 ■ USING EASYSCRIPT

Common scripting techniques
variable (such as “Result”) in each script. Here’s an example of a a function script that
returns a value and another script that calls it:

// This is the calling script. It passes the number 134 to the
// function "MakeWords" and types the result.
Variable Global Parameter, Result
Parameter = 134
Call "MakeWords"
Message Result

The global variables Parameter and Result are accessible to both scripts. By assigning a
value to Parameter in the calling script, then assigning another value to Result in the
function script, you can simulate passing a parameter to a function and retrieving a
result.

The following script does some processing on the parameter passed to it in the
Parameter variable. It converts the parameter (a number) to a string value, then looks
at the text one character at a time and builds a new string containing words that
represent each digit in the number. The While statement loops through each digit
■ 129

CHAPTER 7 ■ USING EASYSCRIPT

Common scripting techniques

13
(character) in the number and the If, Else If, End If statement determines which words
to add to the Result string based on the digit in the number.

// This is the function script in a button named "MakeWords". It
// takes a number parameter and returns a text string containing
// the names of each digit in the number.
Variable Global Parameter, Result
Variable X, L, C, T
T = MakeText Parameter
L = Length T
X = 1
Result = ""
While X <= L

C = SubString T, X, X
If C = "1"

Result = Result & "one "
Else If C = "2"

Result = Result & "two "
Else If C = "3"

Result = Result & "three "
Else If C = "4"

Result = Result & "four "
Else If C = "5"

Result = Result & "five "
Else If C = "6"

Result = Result & "six "
Else If C = "7"

Result = Result & "seven "
Else If C = "8"

Result = Result & "eight "
Else If C = "9"

Result = Result & "nine "
Else If C = "0"

Result = Result & "zero "
End If
X = X + 1

End While

Like subroutine scripts, the advantage of writing function scripts is modularity. Once
you’ve written a function script, any other script can call the function and get a result
with just a few statements.
0 ■

CHAPTER 7 ■ USING EASYSCRIPT

Common scripting techniques
Getting a list of the installed fonts or sounds

Fonts on the Macintosh are stored as resources, and the GetResources function lets
you get a list of resources of any particular type. GetResources requires one
parameter, a four-character resource type, and returns a list of all the available
resources of the given type.

Font resources have the “FOND” resource type, so creating a pop-up Font menu is as
simple as the following:

Variable Choice
Choice = PopupMenu (GetResources "FOND")
SelectMenu "Font", Choice

The first line of the script declares a variable, Choice, to hold the result from the
PopupMenu function. The second line creates a pop-up menu that lists all the
available fonts. When you click the button, a pop-up Font menu appears; the name of
the font you choose is stored in Choice. The third line in the script uses the
SelectMenu command to choose from the menu bar’s Font menu the font you
selected.

Creating a pop-up Sound menu is also just as easy, because sounds are stored as
resources of type “snd ” (note the trailing space).

Variable Choice
Choice = PopupMenu (GetResources "snd ")
Sound Choice

Note that four-character resource types (“FOND”, “snd ”, and so on) are case-sensitive.

Using Drag and Drop

If you’re using System 7.5 or newer (or System 7.1 with the Macintosh Drag and Drop
extensions), you can drag information from an application onto a button and have the
button’s script act on the dropped information. Buttons can receive either plain text
or Finder icons.

To support Drag and Drop in a button, you write a DragAndDrop handler in the
button’s script. Only buttons containing a DragAndDrop handler can receive dropped
information. The DragAndDrop handler runs whenever you drop information on the
button.
■ 131

CHAPTER 7 ■ USING EASYSCRIPT

Common scripting techniques

13
You use the GetDragAndDrop function to find out what was dropped on the button.
When you drop a text selection, GetDragAndDrop returns the dropped text. When
you drop one or more Finder items, GetDragAndDrop returns a list containing the full
paths of all the dropped items.

Note Not all applications support Drag and Drop. For example, you can drag text
from WordPerfect 3.1, SimpleText, or BBEdit 3.0, but not from Microsoft Word 5.1. To
drag and drop Finder icons, you need Finder version 7.1.3 or newer.

Working with dropped text

The following script is a variation on the ManyClip script shown earlier in this chapter.
Instead of using the Option key to store selected text in the button, the script uses a
DragAndDrop handler to receive and store dropped text.

Dropping text on the button stores the dropped text in a static variable. Clicking the
button pastes the stored text in the active application.

On DragAndDrop // this runs only when something is dropped on the button
Variable Static theText
theText = GetDragAndDrop // store the dropped text in theText

End DragAndDrop

On MouseUp // this runs only when you click the button
Variable Static theText
Variable tempClip
tempClip = Clipboard // temporarily store the Clipboard’s contents
Clipboard = theText
SelectMenu "Edit", "Paste" // paste theText in the active application
Clipboard = tempClip // restore the original Clipboard

End MouseUp

Because static variables are local, they need to be declared in both the MouseUp
handler and the DragAndDrop handler. When the same static variable is declared in
different handlers within the same script, the variable has the same value in each
handler.
2 ■

CHAPTER 7 ■ USING EASYSCRIPT

Common scripting techniques
Working with dropped Finder items

The following script creates a pop-up menu that launches items. To add an item to the
menu, drop a Finder icon on the button. To launch an item, click the button and
choose an item from the pop-up menu.

On DragAndDrop // this runs only when something is dropped on the button
// the list of items is stored in a static variable so we don’t lose it when we restart
Variable Static filePathList

// get the path of the dropped item and add it to the path list
filePathList = filePathList & GetDragAndDrop

End DragAndDrop

On MouseDown // this runs only when you click the button
Variable theChoice
Variable Static filePathList

// Option-click the button to clear the pop-up menu
If OptionKey

filePathList = ""
Exit

End If

// show a pop-up menu of the stored paths
theChoice = PopupMenu filePathList
If theChoice = "" // nothing was chosen

Exit
End If
Open theChoice // open the chosen item

End MouseDown

The script adds an item to the pop-up menu by getting the path of the dropped item
from the GetDragAndDrop function. GetDragAndDrop returns a list of one or more
paths, so the script simply adds the path list to the existing filePathList variable. When
you click the button, the PopupMenu function uses the filePathList variable to display
a pop-up menu of paths. The Open command then opens the path chosen from the
menu.

Creating launch buttons using Drag and Drop on a palette

Normally when you drop a Finder icon on a palette (not on a button), nothing
happens. To add Drag and Drop support to a palette (to create launch buttons, for
example), create a button on the palette and name it “PaletteDrop.”
■ 133

CHAPTER 7 ■ USING EASYSCRIPT

Common scripting techniques

13
When you drop a Finder icon on a palette with a PaletteDrop button, OneClick first
creates a new, invisible button the same size as the PaletteDrop button. The new
button is positioned at the same location where you dropped the icon.

After creating the new button, OneClick then calls the DragAndDrop handler in the
PaletteDrop button. In the DragAndDrop handler, you can change the new button’s
icon, name, or other properties, and add a script to the button. Here’s an example
DragAndDrop handler for a PaletteDrop button that creates a new launch button for
an item dropped on the palette.

On DragAndDrop
Variable Quote, thePath
Quote = Char 34 // quotation mark (") character
thePath = GetDragAndDrop 1
ListDelimiter = ":"
// Change some of the new button’s properties
With Button(Button.Count)

.Script = "Open " & Quote & thePath & Quote

.Icon = 1, thePath, 16

.Name = ListItems thePath, –1

.Visible = 1
End With

End DragAndDrop

The Button.Count property returns the number of the last button added to the
palette; that’s how we figure out which button to change. The variable thePath (from
the GetDragAndDrop function) contains the full path to the item dropped on the
palette.

The With Button statement changes some of the new button’s properties, including its
script, icon, name, and visibility:

■ The .Script property (which contains the new button’s script) is set to the Open
command, followed by the item’s path in quotation marks. For example, if the
dropped item was Mac HD:SimpleText, then the new button’s script would be:

Open "Mac HD:SimpleText"

■ The new button’s icon is set to the small (16-pixel) icon of the dropped item.

■ The new button’s name is set to the name of the dropped item (just the name,
not the full path).

■ After setting the other properties, the new button is made visible so it appears on
the palette and can be used.
4 ■

CHAPTER 7 ■ USING EASYSCRIPT

Common scripting techniques
This is a fairly simple example of how to write a DragAndDrop handler for a
PaletteDrop button. The script (as it is written here) does not create multiple launch
buttons if you drop multiple items on the palette. It also does not add Drag and Drop
support to the launch buttons it creates.

Determining how long the mouse is held down

A button’s MouseDown handler runs immediately when you click the button, before
you release the mouse. You can use the Ticks system variable to determine how long
the mouse was held down on the button and perform different actions based on that
length of time. For example, consider a button that opens a folder: If you quickly click
and release the button, the folder opens, but if you hold the mouse down on the
button for a specified period of time (3/4ths of a second in this example), then a pop-
up menu of the folder’s contents appears, letting you select a file to open.

On MouseDown
Variable theFolder beginningTicks delayTime
theFolder = FindFolder "ctrl" // Control Panels folder
beginningTicks = Ticks
delayTime = 45
While Ticks < beginningTicks + delayTime

If NOT IsMouseDown
// Do the following if mouse is released before delay time elapses
Open theFolder
Exit

End If
End While
// Do the following if mouse is held down beyond delayTime
Open theFolder & (PopupMenu File(theFolder).List)

End MouseDown

In this script, the beginningTicks variable contains the time (in 60ths of a second)
when the button was clicked. The While loop repeatedly checks to see if the button
was held down for more than 45 ticks (3/4ths of a second, the delay time). If the
button wasn’t held down for more than 45 ticks (meaning the button was clicked and
immediately released), then the Control Panels folder opens. If the button is held
down longer than 45 ticks, then a pop-up menu listing all the control panels appears;
choosing an item from the menu opens a control panel.
■ 135

CHAPTER 7 ■ USING EASYSCRIPT

Common scripting techniques

13
Making a script run when an application starts

Some of the palettes that come with OneClick use startup scripts—scripts that run as
soon as their application starts. Startup scripts are useful for a variety of reasons
because they can perform a task whenever you start a certain application. Common
startup tasks include the following:

■ Opening one or more documents

■ Moving the palette to a default location on the screen

■ Changing the monitor’s color depth (for games or graphics programs)

■ Scheduling a script to run periodically (see the next section)

Use a Startup handler in a script to specify that the script should run whenever the
application starts. Here’s an example script from an Adobe Photoshop palette that
changes the monitor’s color depth whenever Adobe Photoshop is run.

On Startup
// Switch the monitor to millions of colors
Screen.Depth = 32
// Show the Scanner Tools palette and move it down to the corner of the screen
Palette("Scanner Tools").Visible = 1
Palette("Scanner Tools").Location = 0, ScreenHeight – PaletteHeight

End Startup

Startup handlers run even if the palette is closed when the application starts up. If you
don’t want a script’s startup handler to run when its palette is closed, you can use the
following technique:

On Startup
If NOT Palette.Visible

Exit
End If
Screen.Depth = 32
Palette("Scanner Tools").Visible = 1
Palette("Scanner Tools").Location = 0, ScreenHeight – PaletteHeight

End Startup

Scheduling a script to run periodically

Many of the buttons on the pre-designed OneClick palettes can change their text or
icon’s appearance based on a menu command’s state or other information. For
example, a button on the System Bar periodically updates itself to show the current
6 ■

CHAPTER 7 ■ USING EASYSCRIPT

Common scripting techniques
time and date, and the style buttons in the SimpleText library update themselves to
indicate the current styles selected in the Style menu.

All of these buttons use the Schedule command in their scripts. A scheduled script
runs periodically to check the state of something (such as whether a menu command
is enabled or disabled) and then change their appearance based on the current state.
To update a button’s appearance in real time, a scheduled script must run quite
often—usually every second or half second. The Schedule command lets you specify
(in 1/10 second increments) how often a script should run.

A scheduled script typically contains three parts:

■ The Startup handler runs when the palette’s application starts up. (Use the On
Startup handler to indicate the script is a startup script.) The Startup handler
should use the Schedule command to add the script to OneClick’s list of
scheduled scripts.

■ The Scheduled handler runs whenever OneClick runs the script as a result of it
having been scheduled with the Schedule command. When OneClick runs a
scheduled script, it executes statements in the Scheduled handler. Statements in
the Scheduled handler usually check the status of something, such as whether a
menu command is enabled or disabled, then change the button’s appearance
based on the status.

■ The default handler (usually MouseUp or MouseDown) runs only when you
click the button. This handler contains the usual statements that perform the
action of the button, such as choosing the menu command that’s being
monitored in the Scheduled handler.

Note The name of the command that initiates scheduling is “Schedule” and the
name of the handler is “Scheduled” (with a “d” at the end).

The following script shows a simple scheduled script. The Startup handler schedules
the script to run every half second.

// This is the Startup handler. It turns on scheduling for this script.
On Startup

Schedule 5
End Startup
■ 137

CHAPTER 7 ■ USING EASYSCRIPT

Common scripting techniques

13
// The Scheduled handler sets the button’s text to the name of the font that
// appears checked in the Font menu.
On Scheduled

Menu.Update
Button.Text = Menu("Font").Checked

End Scheduled

The next script shows how the three parts of a scheduled script work together to
create a dynamically changing Get Info button. The script works by monitoring the
Get Info command in the Finder’s File menu; when the command is enabled, the
script uses Button.Mode = 0 to change the button’s icon to Normal appearance. If
the Get Info command is disabled (dimmed because no Finder icon is selected), the
script uses Button.Mode = 2 to give the button a disabled appearance.

On Startup
Schedule 5

End Startup

// This Scheduled handler runs every half second to check the status of the File
// menu’s Get Info command and change the button’s appearance accordingly.
On Scheduled

If Menu("File", "Get Info").Enabled
Button.Mode = 0

Else
Button.Mode = 2

End If
End Scheduled

// This statement is executed only when the button is clicked.
SelectMenu "File", "Get Info"

For more examples of scheduled scripts, see the scripts for the Font, Size, and Style
buttons in the SimpleText button library. Also see the descriptions of the Startup,
Schedule, and Scheduled keywords in Chapter 8, “EasyScript Reference”.

Tips for making scheduled scripts run more efficiently

You should write scheduled scripts to run as efficiently as possible since they usually
run very often. Scheduled scripts run only when you’re not interacting with the
computer (when there is no keyboard or mouse activity); however, the more time the
computer spends running scheduled scripts, the less time there is available for
background processes such as PrintMonitor.
8 ■

CHAPTER 7 ■ USING EASYSCRIPT

Testing and debugging a script
Following are a few suggestions for improving efficiency.

■ Make the Scheduled handler the first handler in the script. When OneCLick
runs a script, it searches through the script to locate the appropriate handler. If
the handler is at the beginning of the script, the search goes slightly faster,
especially with very large scripts.

■ Try to avoid using a large number of variables, especially global variables.
It takes a small amount of time to allocate the memory required for each variable,
and global variables need to be looked up in OneClick’s global variable table
each time the script runs. Variables aren’t actually allocated until the Variable
statement is executed in the script, so declare only those variables at the
beginning of a Scheduled handler that are necessary to determine if further
processing is needed. Others may be declared later on in the handler.

■ Try to avoid script statements that cause screen drawing to occur. Changes
to palettes or buttons, such as changing a button’s .Icon property, can slow down
the script because the button gets redrawn each time the script runs.

■ Try to avoid using Menu.Update to force the application to update its
menus. If you do use it, however, it doesn’t hurt to use it several times or in
several different scripts. OneClick will not process this statement more than twice
a second, no matter how many times it is called.

Testing and debugging a script

Writing a moderately complex script usually takes some time to get the script working
the way you want it to. You may run into logic errors when writing and testing a
script—the script doesn’t behave the way you think it should because of a mistake in
the logical flow of your script. This section provides some tips and techniques to help
you get your scripts working flawlessly faster.

Using message boxes to inspect variables

The Message command is a convenient way to check the value of a variable within a
script while the script runs. If your script isn’t running correctly because a variable
■ 139

CHAPTER 7 ■ USING EASYSCRIPT

Testing and debugging a script

14
doesn’t contain a value you think it should, use a Message statement to show the value
in a message box. Here’s an example:

Variable fileCount, theFileList
theFileList = File("Mac HD:Data:Reports:").List
fileCount = ListCount theFileList

// We’re not sure at this point what FileCount’s value might be,
// so we’ll show it in a message box and then exit
Message fileCount
Exit

When you run the script, a message box appears showing the value of fileCount when
the script reaches the Message statement. When you have the script working the way
you expect and no longer need the message box, simply delete the Message
statement.

You don’t need to use an Exit statement after a Message statement unless you want the
script to stop after the message box appears. For brevity, we’ve omitted the rest of the
script following the Exit statement.

Sometimes you might be working with a string that has an extra white space character
(a space, tab, or return) at the end of it. You can use the Message command to find
out:

Message myStringVar & "!"

The & (concatenation) operator joins the two strings into the one string that appears
in the message box:

If the string has a carriage return appended, the exclamation point appears on the
second line below the string as shown above, otherwise it appears at the end of the
string:
0 ■

CHAPTER 7 ■ USING EASYSCRIPT

Testing and debugging a script
The exclamation point is just an example character used to show this technique. You
can use any character you want.

Using text buttons to monitor the values of variables

If you have more than a couple of variables you want to monitor continuously, or you
don’t want message boxes interrupting your script (using the previous technique),
you can use buttons as text displays to show the current values of variables. The
Button.Text property changes a button’s text label; by changing a button’s text to a
variable’s value, you can monitor as many variables as you wish.

Here’s a sample script that uses Button.Text to monitor two variables on buttons
named A and B:

Variable X, Y
X = 0
While X <= 5

X = X + 1
Y = 5
While Y >= 0

Y = Y – 1
Button("B").Text = Y
Button.Update

End While
Button("A").Text = X
Button.Update

End While

The Button.Update statements cause OneClick to update the text on the buttons
while the script runs. Without the Button.Update statements, the buttons’ text
wouldn’t get updated until the script ends.
■ 141

CHAPTER 7 ■ USING EASYSCRIPT

Testing and debugging a script

14
The values of X and Y appear in two buttons on this example Testing palette during
each pass through the While loops:

For global variables, this technique is even easier. Just create a button with a script
that declares the global variable, then sets its text to the variable’s value, such as the
following:

Variable Global X
Button.Text = X

Whenever you click the button, the button’s text label updates to show the current
value of X.

Using sounds to determine what’s being executed

When writing If and While statements, it’s possible that your script might execute
statements unexpectedly (or not at all)—this usually happens because the condition
being tested in the If or While statement doesn’t evaluate to the value you think it
should. If you’re not sure if a group of statements is being executed, then using a
Sound statement is a quick way to find out. For example, here’s part of a script that
contains an If statement, and we’re not sure if the expression evaluates to True:

If indexNumber = 3
theData = reportTotal & reportSummary
Sound "Quack"

End If

If the expression evaluates to True, the Quack sound plays, indicating that statements
following the If statement are being executed. If the expression doesn’t evaluate to
True (or False) as we think it should, then we know whether or not there’s a problem
based on whether or not the Quack sound played.

Checking for run-time errors

A run-time error is a scripting error that occurs while a script runs, as opposed to a
logic or syntax error in a script. Several commands can generate run-time errors due
to a variety of reasons: invalid parameters; interface items that couldn’t be found
2 ■

CHAPTER 7 ■ USING EASYSCRIPT

Specifications and limits
(windows, menus, buttons, and so on); a file or folder not found; out of memory; and
other conditions.

Normally when a run-time error occurs, OneClick doesn’t display any kind of error
message—it just skips the offending statement and continues executing the rest of the
script. It’s up to you, the script writer, to determine whether or not a run-time error
has occurred.

The Error system variable contains the error result of the last command, function, or
object that reported an error. There are four possible numeric values for Error.

■ 0—No error

■ 1—General error (out of memory or miscellaneous errors)

■ 2—Not Found error

■ 3—Parameter error

See the error table on page 196 for a list of keywords and their associated error values
and meanings.

Specifications and limits

The following table summarizes the memory requirements, capacities, and data
limitations for the EasyScript language.

Number range –2,147,483,648 to 2,147,483,647

Maximum string length Limited only by memory (2 GB maximum)

Maximum length for a variable name 255 characters

Maximum number of variables in a script Limited only by memory

Length of one line in a script Varies; each line must compile to less than
256 bytes (keywords take two bytes each)

Length of a script 32767 characters

Maximum number of nested While, Repeat, or For loops Loops can be nested up to 20 levels deep

Maximum number of nested If/Else/Else If statements No limit

Maximum number of nested scripts (using Call to run
another button’s script and then return)

Scripts can be nested up to 8 levels deep
■ 143

CHAPTER 7 ■ USING EASYSCRIPT

Specifications and limits

14
Memory usage

The OneClick control panel requires about 335K of memory when it’s installed. Each
palette takes an additional 250 bytes of RAM, plus about 100 bytes for every button.
Button resources such as icons, scripts, and button text are purgeable so that any
memory they occupy is recovered by the system if it is needed.

Global palettes occupy memory in the system heap (memory used by system software
and extensions). Application palettes use memory in the application’s memory
partition. If you have an unusually large number of palettes or buttons for a particular
application and that application is usually tight on memory, you may need to increase
the application’s memory size (using Get Info in the Finder). It’s extremely unlikely
that you’ll need to do this, however.

Number of buttons on a palette 65535

Number of global or application palettes Limited only by memory
4 ■

Chapter 8

EasyScript Reference
Using the EasyScript Reference

This chapter contains detailed information about each keyword in the EasyScript
language and covers all commands, functions, system variables, objects, and handlers.
Keywords are listed alphabetically.

In all syntax descriptions, items in italics are values you supply. Items in square
brackets are optional.

For information on values, expressions, operators, iteration, and other EasyScript
language concepts, see Chapter 7, “Using EasyScript.”

What’s new in OneClick 2.0

If you previously wrote your own scripts with OneClick 1.0.3 or earlier, review this
section first to find out what’s new and changed in EasyScript for OneClick 2.0. If you
are new to scripting with EasyScript, you can skip this section and jump ahead to the
keyword reference beginning on page 149.

In most cases, existing scripts for OneClick 1.x will run without changes in OneClick
2.0. Because of new keywords added in EasyScript, however, you may need to edit
some of the scripts you’ve written to avoid name conflicts between your variable
names and the names of new keywords. For example, the words Data, Editor, and
True are no longer valid variable names because they are now EasyScript keywords.

You shouldn’t need to edit your scripts right away—a script with a conflicting name
will run fine until you attemp to edit and save it. When you try to save a script with a
variable name that conflicts with a new EasyScript keyword, OneClick displays “Invalid
variable name” and highlights the variable name you’ll need to change.
■ 145

CHAPTER 8 ■ EASYSCRIPT REFERENCE

14
Following is a list of all the new and changed keywords in EasyScript.

Alias function New Returns an alias for the specified file as a string.

AskButton function Changed Now supports up to eight buttons.

AskFile function Changed You can now supply a custom prompt for the dialog box.

AskKey function New Prompts you to press a key and returns the keystroke in text format.

AskNewFile function New Displays a Save As dialog box and returns a file path.

AskText function Changed Now allows you to supply a custom value that is returned when the user
clicks Cancel.

Button.Data property New Unlimited-length persistent storage for buttons.

CallResult system variable New A global variable you can use to save or pass information between calls to
different handlers or scripts.

CloseResFile command New Closes a file’s resource fork and removes it from the current resource
chain.

ColorPicker function New Displays the color picker dialog box and returns the RGB values of the
chosen color.

ContextualMenu handler New Indicates statements to execute when you Control-click the button,
overriding the default OneClick contextual menu and MouseDown
handler.

Cursor system variable Changed Can now set the active cursor in addition to getting its ID number.

Editor command New Opens the OneClick Editor window to the specified tab, automatically
selecting the specified button or palette.

EditorFont system variable New Gets or sets the font displayed in the Script Editor.

EditorSize system variable New Gets or sets the font size displayed in the Script Editor.

False system variable New Returns the number 0 (zero).

File.Busy property New Returns True (1) if the specified file is open for reading or writing.

File.CreationDate property New Returns a file’s creation date and time.

File.FileVersion property New Returns a file’s version number.

File.KindString property New Returns a file’s type as it appears in the Kind column of Finder windows

File.ModificationDate property New Returns a file’s modification date and time.

File.Name property Changed Can now return the file name portion of a full path.
6 ■

CHAPTER 8 ■ EASYSCRIPT REFERENCE
File.Visible property Changed Now works on folders as well as files.

FinderAlias command New Makes aliases of the specified files.

FileClose command New Closes a file opened with FileOpen.

FileGetEOF function New Gets the end-of-file (length) of a file opened with FileOpen.

FileGetPos function New Gets the file mark (position for reads/writes) of the specified file opened
with FileOpen.

FileOpen function New Opens a file for reading/writing and returns a reference number for use
with other FileIO commands.

FileRead function New Reads the specified amount of data from a file into a variable.

FileSetEOF command New Sets the end-of-file (length) of a file opened with FileOpen.

FileSetPos command New Sets the current mark (position) from which future reading/writing will
occur in a file opened with FileOpen.

FileWrite command New Writes data to a file opened with FileOpen, starting at the current file
mark.

FinderCopy command,
FinderMove command

Changed Now allows script to wait until Finder operation completes before
continuing execution.

FKey command New Executes the specified FKey (0-9).

FontMenu function New Pops up a WYSIWYG font menu and returns the name of the selected
font.

For, Repeat, While commands Changed Switching applications within a loop no longer causes the loop to stop
executing.

GetICHelpers function New Returns the list of helper applications from Internet Preferences.

GetICPref function New Returns the value of the specified preference from Internet Preferences.

GetPalettes function New Returns a list of names of all palettes in a palette file.

GetResIDList function New Returns a list of resource IDs of the specified type.

GetResNameList function New Returns a list of resource names of the specified type.

GetResource function New Retrieves the data from the specified resource in the specified file.

GetResTypeList function New Returns a list of resource types in the specified file.

GetScrap function New Returns the data of the specified resource type from the Clipboard.

GetStringList function New Retrieves the strings in the specified STR# resource.
■ 147

CHAPTER 8 ■ EASYSCRIPT REFERENCE

14
GetWindowText command New Captures text from the specified window and puts it in a variable.

IgnoreClicks system variable New Causes the system to ignore all mouse activity except clicks on OneClick
palettes.

LaunchURL command New Launches a URL using a helper application set in Internet Config.

ListCount function Changed Now counts the null item at the end of a list if the list ends with the list
delimiter.

ListDelete function New Deletes items from a list and returns the new list.

ListFind function New Returns the position (index) of an item in a list.

ListInsert function New Inserts new items into a list and returns the new list.

ListItems function Changed Now returns the null item at the end of a list if the list ends with the list
delimiter.

LoadExtensions command New Loads or reloads OneClick extensions from the specified file.

KeyPress command New Simulates a key press of the specified key.

MenuNumber function New Returns the item number of the last item selected with the PopupMenu
function.

MountVolume command New Mounts an AppleShare server volume over AppleTalk.

MountVolumeIP command New Mounts an AppleShare server volume over TCP/IP.

Notify command New Displays a message in a notification dialog box or floating window.

OldListCount function Obsolete The OneClick 1.0 version of ListCount. Use the new ListCount instead.

OldListItems function Obsolete The OneClick 1.0 version of ListItems. Use the new ListItems instead.

OnlineHelp handler New Used by the Online Help and Online Help Editor palettes for displaying
customized palette help.

OpenFileList function New Returns a list containing the paths of all open files.

OpenResFile function New Opens a file’s resource fork into the current resource chain.

Palette.IsGlobal property New True if the specified palette is global, false if application-specific. Can now
toggle palettes between global and app-specific under script control.

Palette.MainScreen property New Returns the number of the screen where the palette appears on multiple-
monitor systems.

PopupFiles function Changed Now allows you to suppress the display of parent folders in the pop-up
menu.
8 ■

CHAPTER 8 ■ EASYSCRIPT REFERENCE

Absolute function
Absolute function
Syntax Absolute number

Description Returns the absolute value of number.

Examples // Each statement types the value 25
Type Absolute –25

PopupMenu function Changed Can now supply checked menu items either individually or in a list.

PopupMenuFont system variable New Gets or sets the font used in all OneClick pop-up menus.

PopupMenuSize system variable New Gets or sets the font size used in all OneClick pop-up menus.

PopupPalette command Changed Now optionally prevents the tearing off of pop-up palettes, forcing the
palette to behave like a pop-up menu.

PrintText command New Prints text to the current printer using the specified format options.

Process.Window property New Can now access windows in applications other than the active
application.

QuoteText function New Word-wraps text and puts “>” at the beginning of each line.

SetICPref command New Assigns a value to the specified preference in Internet Preferences.

SetResource command New Stores data in a resource of the specified type and ID in the specified file.

SetScrap command New Puts data on the Clipboard as the specified resource type.

SetStringList command New Stores the specified <return>-delimited list in a STR# resource in the
specified file.

SysVersion system variable New Returns the Mac OS version as a whole number (750, 851, and so on.)

TextWidth function New Returns the pixel width of a line of text.

True system variable New Returns the number 1.

TruncText function New Truncates a line of text so that it fits within the specified pixel width.

UserHandler1 … UserHandler5
handlers

New User-defined handlers you can use as subroutines in scripts.

Window.Collapsed property New Gets or sets the windowshade (collapsed) setting of a window.

Window.Zoom property Changed Now works with Appearance Manager, Kaleidoscope, and other software
that relocates zoom boxes.
■ 149

CHAPTER 8 ■ EASYSCRIPT REFERENCE

Alias function

15
Type Absolute 25

Alias function
Syntax Alias path

Description Returns an alias for the specified file or folder, formatted as a string. The alias string
can be stored for later use and can locate the file it represents even if the file is moved
or renamed. The alias string can be passed to any command, function, or object that
expects a file path as a parameter, such as Open and the File object.

You can also use an alias string to send an alias in an Apple event to applications that
require alias parameters. The function formats the alias string in the same format
required by the Process.SendAE message.

Example On DragAndDrop
// Store an alias to the dropped file in a static variable
Variable Static theAlias
theAlias = Alias GetDragAndDrop 1

End DragAndDrop
On MouseUp

Variable Static theAlias
If OptionKey

// Display the path to the alias’ parent
Message File(theAlias).Original

Else If CommandKey
// Display the alias string, just for fun
Message theAlias

Else
// Open the file pointed to by the alias
// Still works even if the original file is moved or renamed
Open theAlias

End If
End MouseUp

See Also Open command (page 253), File object (page 199)

AppleScript command
Syntax AppleScript compiled-script-file

AppleScript
0 ■

CHAPTER 8 ■ EASYSCRIPT REFERENCE

AppleScript command
applescript-statements
End AppleScript

Description Runs a compiled AppleScript script file, or indicates the beginning and end of
AppleScript code.

Compiled-script is a path to a compiled AppleScript script. If you’ve written and
compiled a script using Apple’s Script Editor, use the AppleScript command to run the
compiled script.

You can also use the AppleScript command to embed AppleScript statements within
an EasyScript script. Put the AppleScript statements between the AppleScript and End
AppleScript commands. When you save the button’s script, OneClick tells the
AppleScript extension to compile the embedded AppleScript code. Compiling
AppleScript code may take a few moments, compared to the near-instantaneous
compiling of EasyScript code.

AppleScript scripts that change any properties within the script get updated with the
new properties only if the script is in a compiled script file. AppleScripts embedded
within EasyScript scripts do not get their properties updated.

You must have the AppleScript software installed to use this command. AppleScript is
included in Mac OS 7.5 and later.

For more information on integrating AppleScript with EasyScript, including how to
share data between environments and how to embed EasyScript within AppleScript
applets or compiled scripts, see Appendix B, “Integration with AppleScript”.

Examples // Run the Start File Sharing script included with Mac OS 7.5.
AppleScript "Mac HD:Automated Tasks:Start File Sharing"

// Open the Finder’s "About This Macintosh" window.
AppleScript

tell application "Finder"
activate
open about this computer

end tell
End AppleScript

See Also Appendix B, “Integration with AppleScript”
■ 151

CHAPTER 8 ■ EASYSCRIPT REFERENCE

AskButton function

15
AskButton function
Syntax AskButton [prompt] [, button-list] | [, button1 [, button2…]]

Description Displays a dialog box with the specified prompt message and lets you click one of up
to eight buttons. If you don’t specify any buttons, the dialog box has a single OK
button. The AskButton function returns the number (1–8) of the button clicked.

Button names can either be passed in one parameter as a list, or as separate
parameters, one button name per parameter.

Examples Variable theAnswer
theAnswer = AskButton "Favorite flavor?", "Chocolate<return>Strawberry<return>Banana"
// Types 1, 2, or 3 depending on the button clicked (1=Chocolate, 2= Strawberry, 3=Banana)
Type theAnswer

See Also Message command (page 244), Notify command (page 250), AskList
function (page 154)

AskFile function
Syntax AskFile [type-list] [, prompt]

Description Displays a directory dialog box and returns the full path to the selected file or folder.
If you click Cancel in the dialog box, AskFile returns the empty string (“”).

Type-list is a list of four-character file type codes, such as “TEXT”, “PICT”, “WDBN”, or
“APPL”. To permit choosing a folder, use the pseudo file type “fold”. If you omit “fold”,
the dialog box permits the selection of a file only, not a folder.
2 ■

CHAPTER 8 ■ EASYSCRIPT REFERENCE

AskKey function
Prompt is an optional message to display in the dialog box. If prompt is omitted, the
default message “Select a File/Folder:” appears.

To set the default directory that appears in the dialog box, set the Directory system
variable to the desired path before calling AskFile.

In the AskFile dialog box, check the “Use Alias instead of original” checkbox to return
the path to an alias instead of the path to the file or folder the alias refers to.

Examples Variable theFile, theFolder
theFolder = AskFile "fold"
theFile = AskFile "TEXT"

Select File dialog box (AskFile "TEXT") Select Folder dialog box (AskFile "fold")

See Also AskNewFile function (page 155), Directory system variable (page 191)

AskKey function
Syntax AskKey [prompt] [, default-shortcut] [, cancel-value]

Description Prompts you to press a key and returns the keystroke in text format. The format is the
same as that expected by the Button.KeyShortCut property (see page 163). You can
optionally provide a default shortcut, a brief prompt message, and a special value to
return if the user clicks Cancel.

AskKey returns the null string ("") if you click None in the shortcut dialog box.

If you supply a value in cancel-value, a Cancel button appears in addition to the OK
and None buttons and AskKey returns the cancel-value if you click Cancel.

Example // Prompt the user to change the button’s shortcut, then display the new shortcut.
■ 153

CHAPTER 8 ■ EASYSCRIPT REFERENCE

AskList function

15
// Use the button's existing shortcut as the default shortcut.
Variable theKey
theKey = AskKey "Press a key combination:", Button.KeyShortCut, Char 0
If theKey = ""

Message "You clicked None."
Button.KeyShortCut = "" // remove the shortcut, if any

Else If theKey = Char 0
Message "You clicked Cancel." // don’t change or remove the shortcut

Else
Button.KeyShortCut = theKey // change the shortcut to the key typed by the user
Message "This button's shortcut is now " & theKey

End If

AskList function
Syntax AskList item-list [, prompt] [, selected-list]

Description Displays a message (prompt) and a list of items (item-list) in a dialog box and returns
a list containing the selected items. If you want one or more items in the list to appear
selected by default, include the list of selected items in selected-list.

When the dialog box appears, select an item by clicking it, by using the arrow keys, or
by typing its name (if the list is sorted). To select a single item and close the dialog
box, double-click the item.

To select more than one item, hold down the Command key and click additional
items. To select a contiguous group of items, hold down the Shift key and click the
first and last items in the group.

Examples Variable theResponse
// Show a list of colors with red and yellow already selected
theResponse = AskList "red<return>orange<return>yellow", "Pick colors:", "red<return>yellow"
Type "You picked:" & Return & theResponse
4 ■

CHAPTER 8 ■ EASYSCRIPT REFERENCE

AskNewFile function
Sample AskList dialog box

See Also AskText function (page 156), AskButton function (page 152)

AskNewFile function
Syntax AskNewFile [prompt] [, default-name]

Description Displays a standard Save As dialog box for you to locate and name a file and returns
the full path to the file.

AskNewFile does not actually create the file. Its purpose is to return a full path to a file
that your script may create later.

Examples // Display the Save As dialog box
Variable userPath
userPath = AskNewFile

// Display the Save As dialog box with a prompt and default name of "Clipboard Stuff"
Variable userPath
userPath = AskNewFile "Save clipboard stuff where?", "Clipboard Stuff"
// Add the Clipboard contents to the end of the file specified by the user
ConvertClip
File(userPath).Append = Clipboard & Return & Return
// Display the full path to the named file
Message "Your Clipboard data was added to " & Return & userPath
■ 155

CHAPTER 8 ■ EASYSCRIPT REFERENCE

AskShortcut function

15
Sample AskNewFile dialog box

See Also AskFile function (page 152), Directory system variable (page 191)

AskShortcut function
Syntax AskShortcut

Description Reserved for WestCode use. AskShortcut displays a dialog promting the user for a new
shortcut’s name, keystroke, visibility, and global status and returns the results in a list.

AskText function
Syntax AskText [prompt] [, default-value] [, cancel-value]

Description Displays a dialog box with an edit box and prompts you to type a line of text. When
you click OK, the function returns the typed text. The optional prompt is the prompt
in the dialog box. The second parameter, default-value, is an optional default string
that appears pre-entered in the edit box.

If you supply a value in cancel-value, a Cancel button appears in addition to the OK
button and AskText returns the cancel-value if you click Cancel.

Examples // Assigns whatever is typed to Result. The dialog box says: Type something
Variable Result, favoriteFruit, theResponse
Result = AskText "Type something"

// The default response is Banana
favoriteFruit = AskText "What’s your favorite fruit?", "Banana", Char 0
theResponse = "You typed " & Result & " and "
If favoriteFruit = Char 0

Message theResponse & "you clicked Cancel."
6 ■

CHAPTER 8 ■ EASYSCRIPT REFERENCE

ASResult system variable
Else
Message theResponse & "your favorite fruit is " & favoriteFruit

End If

Sample AskText dialog box

See Also Message command (page 244), AskButton function (page 152), AskList
function (page 154), AskFile function (page 152)

ASResult system variable
Description Contains the AppleScript result variable.

Every time an AppleScript statement is executed, the returned information is put into
the AppleScript variable “result.” If no information is returned, the result variable is
set to empty. The ASResult system variable lets you retrieve the value of AppleScript’s
result variable.

Examples // Display a message box showing the name of Scriptable Text Editor’s front window
AppleScript

-- puts the window name in result
get the name of window 1 of application "Scriptable Text Editor"

End AppleScript
Message ASResult

See Also Integrating OneClick and AppleScript (page 322), AppleScript command (page 150)

Beep command
Syntax Beep
■ 157

CHAPTER 8 ■ EASYSCRIPT REFERENCE

BeepLevel system variable

15
Description Plays the system alert sound.

Examples Beep

See Also BeepLevel system variable (page 158), Sound command (page 292), SoundLevel
system variable (page 293)

BeepLevel system variable
Description Returns the current alert sound volume, or sets the alert volume to a new value.

Changing the BeepLevel volume affects only the default beep sound, not the volume
of other system sounds. It’s the same as adjusting the System Alert Volume on the
Alerts panel of the Monitors & Sound control panel.

The alert sound level can be zero (no sound) to 7 (highest sound level).

Examples // If the Option key is held down, turn off the alert sound, otherwise set the volume to 3.
If OptionKey

BeepLevel = 0
Else

BeepLevel = 3
End If
Beep

See Also SoundLevel system variable (page 293), Beep command (page 157), Sound
command (page 292)

Button object
Description A Button object is a button on a OneClick palette. The Button properties let you

access or change nearly all the properties of a button that you normally set in the
Button Editor. You can also access or change a button’s script using the .Script
property, and you can create and delete buttons using the .New and .Delete messages.

You can specify a button either by name or by number. Specifying by name lets you
perform an operation on a specific button that you already know the name of.
Specifying by number lets you loop through all the buttons on a palette and perform
operations on each of them in sequence. Buttons are numbered 1 to N, where N is the
total number of buttons on the palette. The numbering sequence is the same as the
creation order of the buttons (1 being the oldest, N being the newest).
8 ■

CHAPTER 8 ■ EASYSCRIPT REFERENCE

Button object
Button(–1) refers to the button currently under the cursor. A scheduled script could
check to see which button is under the cursor, if any, and perform some action (such
as display a help message) for the button you’re pointing to.

If you omit the specifier part of the Button object, then the object is assumed to be the
button that was clicked (the button containing the running script). Also, OneClick
assumes the specified button is on the same palette as the button containing the
running script. To specify a button on a different palette, specify a palette object using
this format:

Palette(palette-specifier).Button(button-specifier).Property

.Border Gets or sets the button’s border style. There are 12 border styles numbered 0 through
11 which correspond to the choices in the Border pop-up menu.

Setting the .Border value to 3 removes the border. To make the button appear without
a face or border (so only the icon or text appears, or to create a transparent hotspot
on a palette), set .Border to 3 and .Color to 0.

.Color Gets or sets the button’s color. Colors are numbered 1–256. To determine a color’s
number, drag the mouse over a color in a Color pop-up menu (in the Button Editor)
and look at the number in the bottom-right corner of the menu.

Setting the color to 0 removes the button’s color and makes the button transparent,
allowing the palette’s background to show through (the same as unchecking the
■ 159

CHAPTER 8 ■ EASYSCRIPT REFERENCE

Button object

16
Color checkbox in the Button Editor). Setting the button’s .Color to a value 1–256
also checks the Color checkbox in the Button Editor.

.Count Gets the total number of buttons on the palette (a shortcut for using ListCount
Button.List). No button specifier is necessary. This property is read-only.

// Loop through all the buttons and change them to a light purple color.
Variable X
For X = 1 to Button.Count

Button(X).Color = 43
End For

.Data Gets or sets the text stored in the button’s data property. The .Data property is similar
to a static variable—OneClick stores the data in the palette file so it doesn’t get lost
when you restart or shut down. Unlike statics, however, any button can get or set
another button’s .Data property.

Like the .Text and .Help properties, .Data always returns its value as a text value,
regardless of whether you stored a text or number value.

// Ask the user to choose a text file, then store the path to that file in the button’s .Data
If NOT Button.Data // nothing stored yet

Button.Data = AskFile "TEXT", "Choose a text file:"
Else // Open the file

Open Button.Data
End If

// Clear all stored .Data in every button on the palette
Variable X
For X = 1 to Button.Count

Button(X).Data = ""
End For

.Delete The .Delete message permanently deletes the specified button from the palette. The
button specifier is the name of the button to delete. If you don’t specify a button, the
button containing the script is deleted and the script stops running. To delete a
button on another palette, include a palette specifier before the button specifier.

// Delete the button named "Tile Windows"
Button("Tile Windows").Delete

// Delete the button named "Open Text Editor" on the palette named "Tools"
Palette("Tools").Button("Open Text Editor").Delete
0 ■

CHAPTER 8 ■ EASYSCRIPT REFERENCE

Button object
// Delete all the buttons on the palette named "Cool Buttons"
Variable X, numButtons
numButtons = Palette("Cool Buttons").Button.Count
For X = 1 to numButtons

Palette("Cool Buttons").Button(X).Delete
End For

.Drag Lets you drag a button anywhere on the palette to reposition the button without
opening the OneClick Editor. The dragged button snaps to the palette’s grid settings.
Dragging to another palette copies the button to that palette.

The .Drag message works only in a MouseDown handler. When used as a property,
.Drag returns the name of the palette where the button was dropped.

// Allow a button to be dragged to a new location if the Command key is held down
On MouseDown

Variable newPalette
If CommandKey

newPalette = Button.Drag
Else

Beep
End If
Message "Button was dragged to palette " & newPalette

End MouseDown

.Exists Returns True (1) if the specified button exists, otherwise False (0). You can use this
property to determine if a button exists before performing some other action on the
button.

// If the button named "Switcher" exists, then change its color to red, otherwise
// show an error message
If Button("Switcher").Exists

Button("Switcher").Color = 36
Else

Message "Can’t find the Switcher button"
End If

// If the button named "Current Task" doesn’t already exist, then create it
If NOT Button("Current Task").Exists

Button("Current Task").New
End If

.Height Gets or sets the button’s height. You can set the height to 1 to draw a button as a
horizontal line.
■ 161

CHAPTER 8 ■ EASYSCRIPT REFERENCE

Button object

16
// Change the height of the button named Quicken to 22
Button("Quicken").Height = 22

.Help Gets or sets the button’s Balloon Help message. There is no limit on the length of the
help message.

Button(“Quicken”).Help = “To open Quicken, click here.”

.Icon Gets or sets the button’s icon. Specify a number 1–4 to set the button’s icon to one of
the four stored icons. Setting .Icon to 0 causes no icon to appear on the button. (The
icon isn’t deleted from the button; it just doesn’t appear.)

// Set the button’s icon to icon #1
Button.Icon = 1

// Remove the button’s icon
Button.Icon = 0

You can also copy an icon from one button to another button using the following
syntax:

Button.Icon = icon-number, Button(button-specifier).Icon

The statement copies the currently visible icon from the specified button to the
current button. Icon-number is a number 1–4 that specifies which icon you want to
copy to in the current button.

// Copy the icon currently appearing on the Chooser button to this button’s icon #2
Button.Icon = 2, Button("Chooser").Icon

You can copy a 16- or 32-pixel icon from a file’s Finder icon to a button’s icon using
this syntax:

Button.Icon = icon-number, path [, icon-size]

Path is a path to an application, document, folder, or other Finder item. If the file
you’re copying an icon from has a custom icon, OneClick copes the custom icon, not
the file’s original icon. Icon-size indicates whether you want to copy the small icon
(16) or large icon (32). The default is the small icon if you don’t specify icon-size.

// Set the button’s icon #1 to the SimpleText application’s 32-pixel icon
Button.Icon = 1, "Mac HD:Applications:SimpleText", 32
2 ■

CHAPTER 8 ■ EASYSCRIPT REFERENCE

Button object
.IconAlign Gets or sets the alignment of an icon on the button. The numbers 0 and 5-12
correspond to the 9 positions on the Position grid in the Button Editor. (These values
are the same for the .TextAlign property, except .IconAlign doesn’t use values 1–4.)

.Index Returns the corresponding index number for the button when the button is specified
by name (1 for the first button, 2 for the second, and so on). You can assign a numeric
value to .Index to change the button order.

Changing Button.Index visibly changes the order in which overlapped buttons are
drawn. A button with a higher index number draws on top of a button with a lower
index number.

// Make this button the first button drawn on the palette
// Any overlapping buttons are drawn on top of this button
Button.Index = 1

// Make this button the last button drawn on the palette
// Any overlapping buttons are drawn behind this button
Button.Index = Button.Count

.KeyShortCut Gets or sets the button’s keyboard shortcut. In the string that describes the keyboard
shortcut, use the following keywords to describe modifier keys.

Key Keyword in shortcut string

Command cmd-

Shift shift-

Option opt-

Control ctl-

56

7

8 9 10

11

12

0

■ 163

CHAPTER 8 ■ EASYSCRIPT REFERENCE

Button object

16
For example, the string “cmd-opt-1” assigns the shortcut Command-Option-1, and the
string “num-7” assigns the keyboard shortcut to the 7 key on the numeric keypad. Set
the shortcut to the empty string ("") to remove the shortcut.

// Set button shortcut to Command-Shift-Option-Control-C
Button.KeyShortCut = "cmd-shift-opt-ctl-c"

// Remove the shortcut from the button named “Olivia”
Button("Olivia").KeyShortCut = ""

.Left Gets or sets the button’s horizontal location on the palette. The left side of the palette
is coordinate 0.

// Move the button to the left edge of the palette
Button.Left = 0

.List Gets a list of the names of all the buttons on the palette. Specify a palette object to get
a list of button names from another palette. No button specifier is necessary. This
property is read-only.

// Display a list box containing the names all the buttons on the palette
Variable theSelection
theSelection = AskList Button.List

// Display a list box containing the names of all the buttons on the palette named "Cool Tools"
Variable theSelection
theSelection = AskList Palette("Cool Tools").Button.List

.Location Changes the button’s location on the palette. The .Location property requires two
parameters (left and top) and is write-only. Using .Location is the same as using .Left
and .Top, except it redraws the button only once instead of twice.

// Move the Quicken button to the upper-left corner of the palette
// Leave a 2-pixel margin between the edges of the button and the palette
Button("Quicken").Location = 2, 2

Numeric keypad num-

Key Keyword in shortcut string
4 ■

CHAPTER 8 ■ EASYSCRIPT REFERENCE

Button object
.Mode Gets or sets the appearance of the button. .Mode is a number 0–7 that corresponds to
a setting in the Appearance pop-up menu in the Button Editor. A button’s default
appearance is Normal (0).

// Set the button’s appearance according to the appearance of a menu command
// If Bold is dimmed in the Style menu, then make the button lighter and disabled
If NOT Menu("Style", "Bold").Enabled

Button.Mode = 7
// If Bold is checked, make the button look pushed in and darker
Else If Menu("Style", "Bold").Checked

Button.Mode = 6
// Bold isn’t checked or dimmed, so make the button look normal
Else

Button.Mode = 0
End If

.Name Gets or sets the button’s name. A button’s name is limited to 31 characters.

// Types a list of button names
Variable X
For X = 1 to Button.Count

Type Button(X).Name
End For

// Quacks if the current button’s name is "Quack Button"
If Button.Name = "Quack"

Sound "Quack"
End If

// Renames all the buttons to "Button" and a number
Variable X
For X = 1 to Button.Count

Button(X).Name = "Button" & MakeText X
End For

.New The .New message creates a new button on the palette. The button specifier is the
name of the new button. The button is created with all the default properties

0: Normal 1: Pushed 2: Disabled

3: Inverted 4: Lighter 5: Darker

6: Pushed/Darker 7: Disabled/Lighter
■ 165

CHAPTER 8 ■ EASYSCRIPT REFERENCE

Button object

16
specified in the Button Editor, except the button is invisible. This lets your script
change other properties (size, location, text, icon, color, and so on) before making the
button visible.

OneClick positions the new button in an empty space on the palette (the same as if
you had clicked New Button in the Button Editor). However, the palette is not
automatically resized to make room for the button.

You can create a new button with a width and height different from the default by
including the optional width and height parameters.

Button(button-name).New width, height

You can create a copy of an existing button by assigning another button to the new
button using the following syntax:

Button(button-name).New = Button(button-to-copy)

To copy a button from another palette, add a palette specifier for the original button
using this syntax:

Button(button-name).New = Palette(palette-name).Button(button-to-copy)

All the original button’s properties (including its script) are copied to the new button.
By creating new buttons in this manner, you don’t need to copy all the individual
properties one at a time from the original button to the new button.

// Make a new purple button named "Open Unread Mail" with the text "Unread" in the
// palette’s upper-left corner, then turn the button on after all the properties have been set
Button("Open Unread Mail").New
With Button("Open Unread Mail")

.Color = 43

.Text = "Unread"

.Location = 2, 2

.Visible = 1
End With

// Create a copy of the button named "Toggle" and name it "Toggle 2"
Button("Toggle 2").New = Button("Toggle")
6 ■

CHAPTER 8 ■ EASYSCRIPT REFERENCE

Button object
.Record Gets or sets the current record mode for the specified button, allowing you to record
a new script into a button. To stop, start, or pause recording, set Button.Record to 0,
1, or –1 according to the values in the following table.

Any button specifiers are ignored except when starting recording.

// Start recording a new script into the button “StepSaver” on the current palette
Button("StepSaver").Record = 1

// Stop button recording
Button.Record = 0

// Beep if recording is on
If Button.Record = 1

Beep
End If

.Script Gets or sets a button’s script. Use the .Script property to get a button’s script as a
string, or to assign a string containing a script to another button, replacing the
existing script. Keep the following in mind when assigning a script to a button:

■ When assigning a literal string to a button’s .Script property, replace any
quotation marks (") in the script text with single apostrophes ('). Use the
<return> tag to separate lines in the script text.

■ If you assign a script to a button and the script contains a Startup handler, the
current script stops and the Startup handler runs immediately.

■ If you assign a script to the button containing the currently running script
(replacing the active script), all script execution stops.

■ Special characters in scripts, such as Return, arrow keys, and function keys, are
converted to their text equivalents in angle brackets when you get the .Script

Set values Return values

0 Stop recording Recording off

1 Start or resume recording Recording on

–1 Pause recording Recording paused
■ 167

CHAPTER 8 ■ EASYSCRIPT REFERENCE

Button object

16
property of a button. You must use these same text equivalents when you assign a
literal text string (or text from a text file) to a button’s .Script property:

// Create three new buttons and assign scripts to them. The scripts assigned to each button
// are actually identical; only the method used to represent the Return character is different.
Button("New Button 1").New
Button("New Button 2").New
Button("New Button 3").New
Button("New Button 1").Script = "Message 'Hello there.'<return>Sound 'Quack'"
Button("New Button 2").Script = "Message 'Hello there.'<return>Sound 'Quack'"
Button("New Button 3").Script = "Message 'Hello there.'" & Return & "Sound 'Quack'"

// Assign a script that types the Home and Down Arrow keys
Button("Another Button").Script = "Type '<home><downarrow>'"

// Copy the script from Button 1 to Button 2
Button("Button 2").Script = Button("Button 1").Script

// Take the script stored in the text file named "Launch Script" and assign it to a button
Button("New Button 1").Script = File("Mac HD:Launch Script").Text

// Store the Quicken button's script in a text file named My Quicken Script
File("Mac HD:My Quicken Script").Text = Button("Quicken").Script

.Size Changes the button’s size. The .Size property requires two parameters (width and
height) and is write-only. Using .Size is the same as using .Width and .Height, except it
redraws the button only once instead of twice.

// Change the size of the Quicken button to 40 wide by 22 tall
Button("Quicken").Size = 40, 22

.Text Gets or sets the button’s text (the label that appears on the button). There is no length
limit on the button text. The text wraps inside the button if it’s too long to fit on one
line.

<return> <enter> <tab> <esc> <delete>

<help> <fwddelete> <home> <end> <pageup>

<pagedown> <leftarrow> <rightarrow> <uparrow> <downarrow>

<f1> <f2> <f3> <f4> <f5>

<f6> <f7> <f8> <f9> <f10>

<f11> <f12> <f13> <f14> <f15>
8 ■

CHAPTER 8 ■ EASYSCRIPT REFERENCE

Button object
.TextAlign Gets or sets the alignment of text within or outside the button. The numbers 0–12
correspond to the 13 positions on the Position grid in the Button Editor.

// Place the button’s text outside the right edge of the button
Button.TextAlign = 4

.TextColor Gets or sets the color of the button’s text. Colors are numbered 1–256. See the
Button.Color property for information on determining the number of a color.

.TextFont Gets or sets the font of the button’s text. You can specify a font either by its name (as it
appears in the Button Editor’s font menu) or by its font ID number. The .TextFont
property returns the font name.

Setting .TextFont to 0 (zero) uses the active System font (the font known as “Large
System Font” in the Appearance control panel, usually Charcoal or Chicago). Setting
.TextFont to 1 uses the active Application font (usually Geneva).

// Set the button’s font to Palatino 12
Button.TextFont = "Palatino"
Button.TextSize = 12

// Set the button’s font to Courier (font ID 22)
Button.TextFont = 22

// Set the button’s font to whatever the active System font is
Button.TextFont = 1

1

2

3

4

56

7

8 9 10

11

12

0

■ 169

CHAPTER 8 ■ EASYSCRIPT REFERENCE

Button object

17
.TextSize Gets or sets the font size (in points) of the button’s text.

.TextStyle Gets or sets the font style of the button’s text. Add style numbers together to combine
styles.

// Set style to Plain Text (removes all other style attributes)
Button.TextStyle = 0

// Set style to Bold and Underline
Button.TextStyle = 5

.Top Gets or sets the button’s vertical location on the palette. The top of the palette is
coordinate 0.

// Move the button ten pixels down from the top of the palette
Button.Top = 10

.Update The .Update message tells OneClick to immediately redraw the specified button,
instead of waiting until the script stops executing before redrawing. When a button is
redrawn, its DrawButton handler is also called (if the handler exists).

.Visible Gets or sets whether or not the button appears on the palette. This property
corresponds to the Visible setting in the Appearance pop-up menu in the Button
Editor. Set .Visible to 0 to hide a button or set .Visible to 1 to show it. All buttons are
visible when the OneClick Editor window is open; invisible buttons don’t disappear
until you close the editor window.

.Width Gets or sets the button’s width. You can set the width to 1 to draw a button as a
vertical line.

// Set the width of the button named Quicken to 40, then set the width of
// the current button to match the width of the Quicken button.
Button("Quicken").Width = 40
Button.Width = Button("Quicken").Width

0: Plain Text 1: Bold 2: Italic

4: Underline 8: Outline 16: Shadow

32: Condense 64: Extend
0 ■

CHAPTER 8 ■ EASYSCRIPT REFERENCE

Call command
Call command
Syntax Call [handler-name,] button-name [, palette-name]

Call handler-name

Description Runs another button’s script (or handler within a script) as a subroutine of the active
script. After the called script finishes running, the calling script continues running at
the statement following the Call command.

Button-name is the name of the button to run. If the button is on a different palette,
you must supply the palette’s name in palette-name.

Specify a handler name as an argument to call a specific handler in any button
(including the same button).

Examples // Run the script in the Choose Font button, then run the script in
// the Open E-mail button on the Launcher palette
Call "Choose Font"
Call "Open E-mail", "Launcher"

Call Startup // Call Startup handler in current script
Call UserHandler3, "Select Font", "Text Buttons"// Call UserHandler3 handler in specified button

See Also Calling scripts as subroutines (page 128), Calling scripts as functions (page 128),
UserHandler1 … UserHandler5 handlers (page 299)

CallResult system variable
Description A variable you can use to save data between calls to different handlers or scripts. You

can think of CallResult as similar to a global variable that’s always available and that
doesn’t need to be declared. Because CallResult is actually a system variable (not a
global variable), its value cannot be passed to an AppleScript script.

OneClick does not change the value of CallResult; setting or clearing the value is your
script’s responsibility.

Examples // Button “Startup” on palette “Utilities”
Call "CheckVersion", "Extras"
If NOT CallResult

Message "You need Mac OS 8.1 or later."
Exit

End If
■ 171

CHAPTER 8 ■ EASYSCRIPT REFERENCE

Char function

17
// Button “CheckVersion” on palette”Extras”
If (SysVersion < 810)

CallResult = False
Else

CallResult = True
End If

Char function
Syntax Char ascii-code

Description Returns a string containing the character specified by the ascii-code number. This is
the opposite of the Code function.

Examples // Type the capital letter A
Type Char 65

// Presses the Return key
Type Char 13

See Also Code function (page 176)

Click command
Syntax Click [Global | Local] [Command] [Option] [Control] [Shift] X, Y [, toX, toY [, Delay delay-time]]

Description Simulates clicking the mouse at the specified location of X and Y.

The coordinates are local to the active window or dialog box. For example, Click 50,
100 indicates 50 pixels from the left edge and 100 pixels down from the top edge of
the window contents (not including the title bar). Adding the Global keyword causes
the coordinates to be global to the entire screen. For example, Click Global 50, 100
indicates 50 pixels from the left edge and 100 pixels down from the top edge of the
screen.

Add the toX and toY coordinates to simulate clicking and dragging. When you use toX
and toY, the Click statement clicks the mouse at X, Y, then drags to toX, toY and
releases the mouse button.
2 ■

CHAPTER 8 ■ EASYSCRIPT REFERENCE

Click command
Negative X coordinates measure left from the right edge of the window or screen and
negative Y coordinates measure up from the bottom of the window or screen.

To simulate holding down a modifier key while clicking, use one or more of the
following keywords in any order after the Click keyword: Command, Option, Control,
or Shift.

Clicking in application tool bars

The Click command can click in application tool bars, such as those built in to
Photoshop and ClarisWorks. (The term “tool bar” refers to any palette or other
floating window built into the application—not a OneClick palette.) Use the following
syntax to click in an application tool bar.

Click Local tool-bar-name, X, Y [, toX, toY]

You must specify the keyword Local and the name of the tool bar window followed by
the click locations (you can also click and drag on a tool bar). If you don't know the
name of the tool bar window, use the Window option in the Parameters pop-up menu
in the Script Editor. If the tool bars don’t have names, you can specify them by number
(the same way you specify windows by number), but this method won't be reliable if
the application allows the tool bars to change their front-to-back order.

Recording a script creates the appropriate Click command when you click on a tool
bar.

Specifying a delay time

The delay-time parameter allows you to specify in tenths of a second how long the
mouse button is held down. In Canvas, for example, if you click on a tool which pops
up a menu, it takes a while for the pop-up menu to draw. If the Click commands lets
go of the mouse button too soon, no item is selected from the menu.

Click 10, 100, 40, 150, Delay 10 // Holds the mouse button down for one second

When recording a click and drag, a default delay of 10 (one second) is recorded in the
script. If the script doesn’t need the delay, you can edit the script and take out the
delay.

Note To click buttons or select items from menus, use the SelectButton, SelectMenu, or
SelectPopUp commands. Use Click to click other types of controls.

Examples // Click 200 pixels down and 30 pixels from the right edge of the window.
■ 173

CHAPTER 8 ■ EASYSCRIPT REFERENCE

Clipboard system variable

17
Click –30, 200

// Click the right arrow of the scroll bar at the bottom of the window.
Click –20, –5

// Clicks somewhere in the upper right corner of the screen with the Shift key held down.
Click Shift Global –50, 75

// Drag from 50, 50 to 200, 200 in the active window.
Click 50, 50, 200, 200

// Click and hold the mouse down for one second at 10, 100 then drag to 40, 150
Click 10, 100, 40, 150, Delay 10

// Click at 10, 60 in the tool bar or window named Styles
Click Local "Styles", 10, 60

See Also SelectButton command (page 287), SelectMenu command (page 288), SelectPopUp
command (page 290)

Clipboard system variable
Description Returns the contents of the Clipboard, or puts the specified value on the Clipboard.

Use the Clipboard system variable when you want to store the Clipboard’s contents in
a variable for later use, or when you want to manipulate data on the Clipboard and
later paste it back into the same application or another application.

You can store any type of Clipboard data in a variable, including plain or styled text,
graphics, spreadsheet cells, and other data types. If you want to manipulate the
Clipboard’s contents, however, you can change only the plain text on the Clipboard.
You can use EasyScript’s string- and list-handling commands to manipulate Clipboard
text as you would do with regular string variables.

Note If the Clipboard variable doesn’t contain the data you expect after you copy
something to the Clipboard, or if you assign new data to the Clipboard and find that
pasting the Clipboard doesn’t paste the correct data, you may need to use the
ConvertClip command (see page 179).

Examples // Types the Clipboard contents. A slow paste.
Type Clipboard

// Puts My Name on the Clipboard as plain text.
4 ■

CHAPTER 8 ■ EASYSCRIPT REFERENCE

CloseResFile command
Clipboard = "My Name"

// Copy this script to several buttons to make multiple Clipboards. Because the script doesn’t
// actually manipulate the Clipboard data (it just gets data from and puts data onto the
// Clipboard), it works with any type of data on the Clipboard (text, pictures, and so on).
Variable Static clipContents
// If the button is Option-clicked, copy the selection and put it in a static variable.
If OptionKey

SelectMenu "Edit", "Copy"
clipContents = Clipboard

Else
// When clicked without the Option key, put the contents back on the Clipboard and paste.

Clipboard = clipContents
SelectMenu "Edit", "Paste"

End If

See Also Accessing the Clipboard (page 125), ConvertClip command (page 179)

CloseResFile command
Syntax CloseResFile refNum

Description Closes a file’s resource fork and removes it from the current resource chain.

Note This is a technical Mac OS function and should be used at your own risk.

Examples Variable refNum
// Open the resource fork of a file containing sound resources
// and put the file’s reference number in refNum.
refNum = OpenResFile "Mac HD:YoYoLand™:Sound Library"
// Play a sound contained in the resource file.
Sound "Mystery"
// Close the file referred to by refNum.
CloseResFile refNum

Author Info CloseResFile, part of Resource Extension
Copyright © 1998 Life OnLine Software (lr). All rights reserved.
■ 175

CHAPTER 8 ■ EASYSCRIPT REFERENCE

CloseWindow command

17
CloseWindow command
Syntax CloseWindow

Description Closes the active (front) window.

Examples CloseWindow

See Also Window object (page 305)

Code function
Syntax Code text

Description Returns (as a number) the ASCII code of the first character in text. This is the opposite
of the Char function.

Examples // Types 97
Type Code "a"

// Types 65
Type Code "Apple"

See Also Char function (page 172)

ColorPicker function
Syntax ColorPicker [prompt] [, defaultColor]

Description Displays the Color Picker dialog box and returns a return-delimited list of the three
RGB (red, green, blue) values of the selected color. RGB values are in the range 0–
65535.

Prompt is an optional message to display in the dialog box. DefaultColor is a return-
delimited list of RGB values to display as the original color.

Clicking Cancel in the dialog box returns the empty string (““).

Examples // Show a custom prompt and start with orange (full red, half green, no blue)
Variable theColor
theColor = ColorPicker "Go ahead, pick a color!", "65535<return>32767<return>0"
6 ■

CHAPTER 8 ■ EASYSCRIPT REFERENCE

CommandKey system variable
// Display the color values chosen
Message theColor

Sample Color Picker dialog box

Author Info ColorPicker Extension
Copyright © 1998 Life OnLine Software (lr). All rights reserved.

CommandKey system variable
Description Returns True (1) if the Command key was held down when the button was clicked to

run the script. You cannot set this system variable.

Use CommandKey, ControlKey, OptionKey, and ShiftKey to create buttons that
perform different actions based on the modifier key (or keys) that are pressed when
you click the button.

Examples // If the Command key was pressed, select SuperScript, otherwise select SubScript
If CommandKey

SelectMenu "Style", "SuperScript"
Else

SelectMenu "Style", "SubScript"
End If

See Also ControlKey system variable (page 179), OptionKey system variable (page 255),
ShiftKey system variable (page 292)
■ 177

CHAPTER 8 ■ EASYSCRIPT REFERENCE

ContextualMenu handler

17
ContextualMenu handler
Description A script’s ContextualMenu handler executes when you Control-click a button,

overriding OneClick’s built-in contextual menu. Like the MouseDown handler, a
ContextualMenu handler executes immediately when you click, before you release
the mouse button.

If a button named PaletteContextualMenu exists on the palette, OneClick runs the
ContextualMenu handler in the PaletteContextualMenu button whenever you
Control-click an empty area of the palette’s background, overriding the built-in
palette contextual menu. If the PaletteContextualMenu button exists but does not
contain a ContextualMenu handler, then nothing happens (and no contextual menu
appears) when you Control-click the palette’s background.

Note If the ContextualMenu handler in the PaletteContextualMenu button displays a
pop-up menu, the menu appears on the button, not where you Control-clicked the
palette. Because of this behavior, it’s best to use a PaletteContextualMenu button only
when you want to disable OneClick’s contextual menu for your palette, rather than
provide an alternate menu.

Examples // When you Control-click the button, you see a pop-up menu of available sounds.
// To play the sound chosen from the menu, click the button without the Control key down.
On ContextualMenu

Variable Static chosenSound // Static so the name won’t be lost when the script ends
Variable theChoice
// Pop up a menu of sounds
theChoice = PopupMenu (GetResources "snd ")
If theChoice

chosenSound = theChoice
End If

End ContextualMenu
On MouseDown

Variable Static chosenSound
Sound chosenSound

End MouseDown

// When you Control-click the palette’s background, this handler in a button named
// PaletteContextualMenu runs, overriding OneClick’s contextual menu. The handler behaves
// as if you had Control-clicked the PaletteContextualMenu button itself.
On ContextualMenu
8 ■

CHAPTER 8 ■ EASYSCRIPT REFERENCE

ControlKey system variable
Beep
Beep

End ContextualMenu

See Also MouseUp handler (page 249), IsMouseDown system variable (page 230)

ControlKey system variable
Description Returns True (1) if the Control key was down when the button was clicked to run the

script. You cannot set this system variable.

Use CommandKey, ControlKey, OptionKey, and ShiftKey to create buttons that
perform different actions based on the modifier key (or keys) that are pressed when
you click the button.

Examples // If the Control key was pressed, dial GEnie, otherwise display the dialing directory.
If ControlKey

SelectMenu "Dial", "GEnie"
Else

SelectMenu "Dial", "Directory…"
End If

See Also CommandKey system variable (page 177), OptionKey system variable (page 255),
ShiftKey system variable (page 292)

ConvertClip command
Syntax ConvertClip [copy-to-application]

Description Forces the active application to convert its Clipboard contents from a private data
format to a public format. You don’t need to use this command if the application
you’re using always stores its Clipboard contents in a public format, such as TEXT,
PICT, or RTF.

If you want to store the Clipboard data in one application and use it in another
application, you may need to use ConvertClip to convert the Clipboard’s data prior to
storing it in a variable. Normally, the Clipboard contents are converted when you
switch from one application to another so that the application you’re switching to can
use the Clipboard data. But if you get the contents of the Clipboard and store it in a
■ 179

CHAPTER 8 ■ EASYSCRIPT REFERENCE

Cursor system variable

18
variable, then switch applications, this conversion doesn’t occur in the variable. That’s
when you may need to use ConvertClip.

If the copy-to-application parameter is 1 (True), OneClick tells the application that
your script has put new data on the Clipboard and that the application needs to
recognize the new data. If the parameter is 0 (False) or missing, it indicates that you
want to get the data from the Clipboard and the application needs to make its
Clipboard data publicly available.

Examples // Get the contents of the Clipboard
ConvertClip
a = Clipboard

// Put data on the Clipboard
Clipboard = a
ConvertClip 1

See Also Clipboard system variable (page 174)

Cursor system variable
Description Returns the ID number of the cursor (mouse pointer) or changes the cursor.

Use Cursor to determine which cursor is active. It’s useful in conjunction with the
Wait command: have a script start some long process that causes the watch cursor ()
to appear, then stop and wait for the standard arrow cursor () to appear before
continuing. You can use the Cursor submenu in the Script Editor’s Parameters menu
to see the ID numbers of the cursors in the active application. The ID number of the
standard system arrow cursor is always –1.

In most applications, the cursor changes to the standard system arrow when you
move the cursor over a palette. In some applications, however, the cursor doesn’t
change to the arrow, especially if the cursor is animated and the application doesn’t
give any time to background processes. If you want a script to reliably check for the
system arrow cursor, don’t move the mouse over a palette while the script runs.

If you change the cursor by setting the Cursor variable, the cursor reverts to the
previous cursor when the script ends or when you set Cursor to 0 (zero). To see
available cursors and insert a cursor ID number in a script, choose Cursor from the
0 ■

CHAPTER 8 ■ EASYSCRIPT REFERENCE

DateTime object
Parameters pop-up menu in the Script Editor, then choose one of the cursors
displayed.

Examples // Sign on to America Online, then wait until we’re signed on before opening Stuffit Deluxe
Open "Mac HD:Communications:America Online v2.5.1:America Online v2.5.1"
Wait (Window.Name = "Welcome")
SelectButton "Sign On"
Wait (Cursor = –1)
Open "Mac HD:Utilities:Compression:Stuffit Deluxe"

// In Finder, change the cursor to a crossbar, then display a message
Cursor = 3
Message "The cursor should be a crossbar"
// The cursor changes back when the script ends

DateTime object
Description The DateTime object lets you work with dates and times. Using the properties of the

DateTime object, you can get the current date and time, format the date or time in a
variety of string formats, and perform date math.

The specifier for the DateTime object is a serial number, which is the number of
seconds since January 1, 1904, 00:00:00 (midnight). You use .DateSerial to convert a
year, month, and day to a serial number; you use .TimeSerial to convert hours,
minutes, and seconds (since midnight of the current date) to a serial number. To get a
serial number that represents both a date and time, add the .DateSerial and
.TimeSerial values.

You can perform date math (such as adding a number of days to a date) by first
converting a date to a serial number, then adding or subtracting the appropriate
number of seconds (86400 seconds per day). You can then use .DateString or other
date-related properties to convert the new serial number to a date.

The .DateString and .TimeString properties return the specified date or time
formatted as a string. An optional parameter lets you adjust how the date or time
should be formatted.

The .Year, .Month, .Day, .Weekday, .Hour, .Minute, and .Second properties return
their respective part of the specified serial number. If no serial number is specified,
the properties assume the current date and time.
■ 181

CHAPTER 8 ■ EASYSCRIPT REFERENCE

DateTime object

18
The DateTime object supports dates and times from January 1, 1904 00:00:00 AM
through February 6, 2040 6:28:15 AM. Because dates are expressed as a number of
seconds since 1904, dates larger than EasyScript’s maximum number
(2,147,483,647—January 19, 1972 3:14:07 AM) “wrap around” into the negative
number range and continue counting up from –2,147,483,648.

All DateTime properties are read-only.

.DateSerial Returns the current date as a serial number. The number of seconds since 00:00:00
(midnight) is not included in the serial number.

To get a serial number for a different date, include the year, month, and day
parameters following .DateSerial. The year must be four digits; 99 is not interpreted
as 1999.

// Determine the number of days between today and July 13, 1963
Variable currentDate, birthDate, numSeconds, numDays
// Get the serial number for today’s date
currentDate = DateTime.DateSerial
// Get the serial number for July 13, 1963
birthDate = DateTime.DateSerial 1963, 7, 13 // year, month, day
numSeconds = currentDate - birthDate
numDays = numSeconds / 86400 // 86400 seconds per day (24 * 60 * 60)
Message "I was born " & numDays & " days ago."

.DateString Returns the specified date as a string, or the current date if no serial number is
specified. The optional format parameter specifies which of several date formats to
use. If you don’t specify a format, DateString uses the default short format. The default
types use the format specified by the Date and Time control panel.

You can use the Date command in the Script Editor’s Parameters pop-up menu to
choose different format settings and insert the proper format number in the script.

Format Type Example

0 Default short* 4/22/94

1 Default long* Thursday, April 22, 1994

2 Default abbreviated* Thu, Apr 22, 1994

3 Short MDY 4/22/94
2 ■

CHAPTER 8 ■ EASYSCRIPT REFERENCE

DateTime object
Variable theDate

theDate = DateTime.DateSerial 1995, 9, 26

4 Short DMY 22/4/94

5 Short YMD 94/4/22

6 Abbreviated MDY Apr 21, 1994

7 Abbreviated DMY 21 Apr, 1994

8 Long MDY April 21, 1994

9 Long DMY 21 April, 1994

10 Abbreviated WMDY Thu, Apr 21, 1994

11 Abbreviated WDMY Thu, 21 Apr, 1994

12 Long WMDY Thursday, April 21, 1994

13 Long WDMY Thursday, 21 April, 1994

+16 Include leading zeros 04/03/94, April 03, 1994

The following apply only to the short type:

+32 Include century 4/22/1994

+0 Use ‘/ ’ separator 4/22/94

+64 Use ‘-’ separator 4-22-94

+128 Use ‘.’ separator 4.22.94

+192 Use space separator 4 22 94

Type DateTime(theDate).DateString Types: 9/26/95

Type DateTime(theDate).DateString 0 Same as above

Type DateTime(theDate).DateString 1 Types: September 26, 1995

Type DateTime(theDate).DateString 3 Types: 9/26/95

Type DateTime(theDate).DateString 19 Types: 09/26/95

Type DateTime(theDate).DateString 179 Types: 09.26.1995

Type DateTime(theDate).DateString 117 Types: 1995-09-26

Type DateTime(theDate).DateString 8 Types: September 2, 1995

Format Type Example
■ 183

CHAPTER 8 ■ EASYSCRIPT REFERENCE

DateTime object

18
.Day Returns the day of the month (1–31) for the specified serial number, or the current
day if no serial number is specified.

.Hour Returns the number of hours (0–23) since midnight for the specified serial number,
or the current hour if no serial number is specified.

.Minute Returns the number of minutes (0–59) past the hour for the specified serial number,
or the current minute if no serial number is specified.

.Month Returns the month number (1–12) for the specified serial number, or the current
month if no serial number is specified.

// Get the current month number and display it as a string
Variable theMonth monthList
theMonth = DateTime.Month
monthList = "January,February,March,April,May,June,July,August,"
monthList = monthList & "September,October,November,December"
ListDelimiter = ","
Message "It’s " & ListItems monthList, theMonth

.Second Returns the number of seconds (0–59) past the minute for the specified serial
number, or the current second if no serial number is specified.

.TimeSerial Returns the current time as a serial number. The serial number includes only seconds
since 00:00:00 (midnight) of the current date; the number of seconds since January 1,
1904 is not included in the serial number.

To get a serial number for a different time, include the hour (0–23), minute (0–59),
and second (0–59) parameters following .TimeSerial.

// Determine the time two and a half hours (150 minutes) from now
Variable currentTime, newTime
// Get the serial number for the current time
currentTime = DateTime.TimeSerial
newTime = currentTime + (150 * 60) // 150 minutes times 60 seconds per minute
Message "2.5 hours from now, it will be " & DateTime(newTime).TimeString

// Determine the amount of time it takes a script to run in hours, minutes, and seconds.

Type DateTime(theDate).DateString 26 Types: Tue, Sep 26, 1995
4 ■

CHAPTER 8 ■ EASYSCRIPT REFERENCE

DateTime object
// (This calculation works only if the script takes less than 24 hours to run.)
Variable startTime elapsedTime
// Get the start time in seconds since 1-Jan-1904 00:00:00.
// Important: Because .DateSerial accepts parameters, you need to enclose it in parentheses
// so that the expression following it is not interpreted as a parameter.
startTime = (DateTime.DateSerial) + DateTime.TimeSerial
// Do a lengthy operation here. For this example, the “lengthy operation” simply waits
// for you to press a key. After running the script, wait a few seconds or minutes
// and then press a key to see the time elapsed.
Wait IsKeyDown
// Subtract the start time from the end time to get the duration in seconds.
elapsedTime = (DateTime.DateSerial) + (DateTime.TimeSerial) - startTime
// Display the elapsed time in HH:MM:SS format
Message "Elapsed time: " & DateTime(elapsedTime).TimeString 21

.TimeString Returns the specified time as a string, or the current time if no serial number is
specified. The optional format parameter specifies which of several time formats to
use. If you don’t specify a format, .TimeString uses the default short format. The
default time types use the format specified by the Date and Time control panel.

You can use the Time command in the Script Editor’s Parameters pop-up menu to
choose different format settings and insert the proper format number in the script.

Variable theTime
theTime = DateTime.TimeSerial 16, 9, 13 // 4:09:13 PM

Format Type Example

0 Default 1:07 PM

1 Default with seconds* 1:07:45 PM

2 12 hour 1:07 PM

3 12 hour with seconds 1:07:45 PM

4 24 hour 13:07

5 24 hour with seconds 13:07:45

+16 Include leading zeros before hour 01:07 PM

Type DateTime(theTime).TimeString Types: 4:09 PM (format may vary)

Type DateTime(theTime).TimeString 19 Types: 04:09:13 PM

Type DateTime(theTime).TimeString 5 Types: 16:09:13
■ 185

CHAPTER 8 ■ EASYSCRIPT REFERENCE

Dial command

18
.Weekday Returns a number for the day of the week (1=Sunday, 2=Monday, … 7=Saturday)
for the specified serial number, or the current day of week if no serial number is
specified.

Variable theDate newDate dayList msg
dayList = "Sunday,Monday,Tuesday,Wednesday,Thursday,Friday,Saturday"
theDate = DateTime.DateSerial
newDate = theDate + (86400 * 4) // add four days
ListDelimiter = ","
msg = "Today is " & (ListItems dayList, DateTime(theDate).Weekday) & Return
msg = msg & "Four days from now it will be " & (ListItems dayList, DateTime(newDate).Weekday)
Message msg

.Year Returns the year (1904–2040) for the specified serial number, or the current year if no
serial number is specified.

Dial command
Syntax Dial telephone-number [, port]

Description Dials the specified telephone number. If you don’t specify a port, the number is sent
to the modem port. Values for port are:

■ 0: internal speaker

■ 1: modem port

■ 2: printer port

If you have no modem, use port 0 (the speaker) and hold the mouthpiece of the
phone close to the computer’s speaker.

If telephone-number begins with “AT”, the entire string is sent as a command to the
modem.

Any non-digits in telephone-number except the comma are ignored. A comma
indicates a pause.

Note The Dial command is an extension (external command). It’s not available if the
OneClick Extensions file is not installed in the Extensions folder inside the OneClick
Folder (in Preferences).

Examples // Dials through modem port
6 ■

CHAPTER 8 ■ EASYSCRIPT REFERENCE

DialogButton object
Dial "555-7427"

// Dials through the speaker
Dial "555-7427", 0

// Sends a command to the modem
Dial "ATS0=0S11=40DT5557427"

DialogButton object
Description A DialogButton object is any push button, radio button, or checkbox in an application

window or dialog box. You can tell whether a button is checked or enabled by looking
at the button’s .Checked or .Enabled property, then click the button (using
SelectButton) if necessary to check or uncheck the button. You specify a DialogButton
object using the button’s name (such as “OK” or “Cancel”) as the specifier.

You can specify dialog box buttons by number. Specifying by number is necessary
when buttons have no names or duplicate names. To determine the number of a
dialog box button, use the Button item in the Parameters pop-up menu in the Script
Editor. The first button listed is 1, the second is 2, and so on.

In the picture above, the following statements describe the state of the buttons in the
dialog box. Checkboxes and radio buttons can also be disabled, although they aren’t
pictured here.

DialogButton("Checked Checkbox").Checked = 1
DialogButton("Unchecked Checkbox").Checked = 0
DialogButton("Checked Radio Button").Checked = 1
DialogButton("Unchecked Radio Button").Checked = 0
DialogButton("Enabled Push Button").Enabled = 1
DialogButton("Disabled Push Button").Enabled = 0

You can use wildcard characters to match button names. ‘?’ matches a single character
and ‘*’ matches zero or more characters.
■ 187

CHAPTER 8 ■ EASYSCRIPT REFERENCE

DialogButton object

18
All DialogButton properties are read-only.

.Count Returns the number of buttons and checkboxes in the active dialog box.

.Checked Returns 1 if the specified button is checked, or 0 if it’s unchecked.

// Open the Page Setup dialog, click Options, and uncheck Substitute Fonts if it’s checked
SelectMenu "File", "Page Setup…"
SelectButton "Options"
If DialogButton("Substitute Fonts").Checked

SelectButton "Substitute Fonts" // click the checked button to uncheck it
End If

.Enabled Returns 1 if the specified button is enabled (not dimmed), or 0 if it’s dimmed.

// Display a message and stop the script if the "Subscribe" button isn’t available,
// otherwise click the button and continue.
If NOT DialogButton("Subscribe").Enabled

Message "The Subscribe button isn’t available. (Probably because no edition is selected.)"
Exit

Else
// click the Subscribe button
SelectButton "Subscribe"
// set some subscriber options
SelectMenu "Edit", "Publishing", "Subscriber Options..."

End If

.Exists Returns True (1) if the specified dialog box button exists, otherwise False (0). Use this
property to determine if a button exists before performing some other action.

// If the Cancel/Replace dialog box appears, then click the Replace button
If DialogButton("Replace").Exists

SelectButton "Replace"
End If

// If it looks like an Open or Save dialog box is on the screen, then show the
// Directory Assistance palette, otherwise hide the palette
If DialogButton("Desktop").Exists AND DialogButton("Eject").Exists

Palette("Directory Assistance").Visible = 1
Else

Palette("Directory Assistance").Visible = 0
End If
8 ■

CHAPTER 8 ■ EASYSCRIPT REFERENCE

DialogButton object
.Index Returns the corresponding index number for the dialog box button when the dialog
box button is specified by name (1 for the first dialog box button, 2 for the second,
and so on). For the DialogButton object, this property is read-only.

.List Returns an unsorted list of names on all the buttons in the frontmost window or
dialog box.

// Displays a list box listing all the buttons in the Finder’s Print dialog box.
Variable theResponse
SelectMenu –1, "Finder"
SelectMenu "File", "Print Window…"
// Display a list box and get a response. The chosen list items are put in theResponse.
theResponse = AskList DialogButton.List

AskList dialog box listing buttons from the Print dialog box

// Choose Save As, type a file name, click Save, and then click Replace if necessary
SelectMenu "File", "Save As…"
Type "Personal Assets 6/2/95"
SelectButton "Save"
// If the Replace/Cancel dialog box appears, then DialogButton.List will contain
// "Cancel<return>Replace" and Find will return a non-zero value. Otherwise, DialogButton.List
// will contain nothing and Find will return 0, causing the SelectButton statement to be skipped.
If Find "Replace", DialogButton.List

SelectButton "Replace"
End If

.Name Returns the name of a dialog box button specified by index number.

Message DialogButton(1).Name // Displays the first button’s name
■ 189

CHAPTER 8 ■ EASYSCRIPT REFERENCE

Dialogs system variable

19
Message DialogButton(DialogButton.Count).Name // Displays the last button’s name

Dialogs system variable
Description Enables or disables display of dialog boxes while a script runs. False (0) means don’t

show dialog boxes, True (non-zero) means show dialog boxes (the default).

Set Dialogs to 0 (False) to keep dialog boxes from flashing up on the screen while the
script runs. It makes script execution look smooth and clean. The script can still type
information and click buttons in dialog boxes, even when they’re not visible.

Only certain types of dialog boxes are affected by setting the Dialogs system variable.
Specifically, only modal dialog boxes and alert boxes are hidden. Movable dialog
boxes (both modal and non-modal), windows, and windows disguised as dialog boxes
are not hidden.

When a script ends or is cancelled with Command-period, Dialogs is automatically set
back to True. You don’t need to explicitly set Dialogs to True at the end of the script.
(If Dialogs was left False, then you wouldn’t be able to see any dialog boxes while
working in your applications.)

Examples // Check the Substitute Fonts checkbox in Page Setup Options, but don’t show the two dialogs
Dialogs = 0
SelectMenu "File", "Page Setup..."
SelectButton "Options"
If NOT DialogButton("Substitute Fonts").Checked

SelectButton "Substitute Fonts"
End If
SelectButton "OK"
SelectButton "OK"
Dialogs = 1

DialogText system variable
Description The DialogText system variable lets you get or set the text of the active text box in a

dialog box. (The active text box is the box containing the insertion point or highlight.)
Setting the DialogText variable is faster than using the Type command to put text in a
text box.
0 ■

CHAPTER 8 ■ EASYSCRIPT REFERENCE

Directory system variable
In dialog boxes that contain more than one text box, type a Tab character to move
between boxes.

Examples // Type “Cesar” in the current text box
DialogText = "Cesar"
// Move to the next text box, then type “Faison”
Type Tab
DialogText = "Faison"

// Add the suffix .PICT to the file name in the Save As dialog box
SelectMenu "File", "Save As*"
DialogText = DialogText & ".PICT"

// Copy the text in the active text box to the third text box
Variable theText
theText = DialogText
Type Tab Tab
DialogText = theText

Directory system variable
Description Returns the directory where file open and save operations start from, or sets the

current directory for file open and save operations to the full path specified.

Set the Directory system variable to the path of the folder you want to appear in Open
and Save As dialog boxes. If you set the Directory variable while an Open or Save
dialog box is on the screen, the dialog box switches to the specified folder.

Examples // Save the current directory, then set the directory to where we want to save a file.
Variable saveDir
saveDir = Directory
Directory = "Mac HD:Data:"
// Select Save As from the File menu, type a file name, then click Save and Replace.
SelectMenu "File", "Save As…"
Type "My Notes File"
SelectButton "Save"
SelectButton "Replace"
// Set the directory back to the previous directory.
Directory = saveDir

// Change the folder in the Open or Save dialog box to the folder chosen from a pop-up menu
Directory = PopupFiles 0, "fold" // start at the desktop level, list only folders in menu
■ 191

CHAPTER 8 ■ EASYSCRIPT REFERENCE

DragAndDrop handler

19
DragAndDrop handler
Description A script’s DragAndDrop handler executes when you drag and drop a Finder icon or

text clipping on the button. Use the GetDragAndDrop function to retrieve the text or
the paths of the dropped icons. You cannot drop items on a button that doesn’t
contain a DragAndDrop handler.

Examples // Move all the files dropped on the button to the "Briefcase" folder
On DragAndDrop

FinderMove GetDragAndDrop, "Mac HD:Briefcase:"
End DragAndDrop

// Store the text dropped on the button in a static variable named theStoredClipping.
// The button’s text label shows the contents of the text clipping.
// You can later click and drag from the button to insert the text in another document.
On DragAndDrop

Variable Static theStoredClipping
theStoredClipping = GetDragAndDrop
Button.Text = theStoredClipping

End DragAndDrop

// To insert the stored clipping in a document, simply click the button and
// drag from the button to the document.
On MouseDown

Variable Static theStoredClipping
DragButton theStoredClipping

End MouseDown

See Also GetDragAndDrop function (page 221), DragButton command (page 192), Using Drag
and Drop (page 131)

DragButton command
Syntax DragButton text

Description Drags the specified text from the button and lets you drop the text in a Drag-and-
Drop-aware application. The DragButton command works only inside a MouseDown
handler.

Examples // Drag and drop the current date into a document. Option-drag to drag the current time.
On MouseDown

If OptionKey
2 ■

CHAPTER 8 ■ EASYSCRIPT REFERENCE

DrawButton handler
DragButton Time
Else

DragButton Date
End If

End MouseDown

Click the button and drag it to a Drag-and-Drop-aware application

Dropping the button in the document inserts the DragButton parameter value

// Option-click to choose a text file from the pop-up menu. Then drag the button
// to insert the file’s contents in a document.
On MouseDown

Variable theFolder
Variable Static theFile
theFolder = "Mac HD:Boilerplate Text:"
If OptionKey

theFile = PopupMenu File(theFolder, "TEXT").List
Button.Text = theFile // show the file’s name on the button

Else
DragButton File(theFolder & theFile).Text

End If
End MouseDown

DrawButton handler
Description A script’s DrawButton handler executes each time OneClick draws or redraws the

button. OneClick redraws a button whenever any of the following occur:

■ the button gets clicked
■ 193

CHAPTER 8 ■ EASYSCRIPT REFERENCE

DrawIndicator command

19
■ the button, its palette, or the screen gets updated

■ a script changes a button’s visual properties (text, color, icon, size, and so on)

■ the button becomes visible (if it was previously hidden or obscured)

Examples // Play the "Quack" sound whenever OneClick redraws the button
On DrawButton

Sound "Quack"
End DrawButton

See Also DrawIndicator command (page 194), Button.Update (page 170),
Palette.Update (page 262)

DrawIndicator command
Syntax DrawIndicator progress [, color]

Description Draws a progress indicator (a thermometer or pie graph) on the button. Progress is a
percentage (0–100) that indicates how full to draw the indicator. Color is the color
value (1–256) of the indicator. To draw a pie graph instead of a thermometer, specify a
negative color value. If you omit the color parameter, DrawIndicator draws a
thermometer using black as the default color.

The indicator is proportional in size to the button and fills almost the entire button.
To make an indicator appear directly on the palette (not inside a button), set the
button’s border style to None, set its appearance to Disabled, and uncheck its color
checkbox.

Examples // Draw a black progress bar that’s half full
DrawIndicator 50

// Draw a purple pie graph that’s 1/3 full
DrawIndicator 33, –97

See Also DrawButton handler (page 193)

Editor command
Syntax Editor tab-name [, palette-name] [, button-name]
4 ■

CHAPTER 8 ■ EASYSCRIPT REFERENCE

EditorFont system variable
Description Opens the OneClick Editor and displays the specified tab. If you specify an optional
palette-name and button-name, the editor selects the palette or button.

Examples // Open the Button Library
Editor "Library"

// Open the Script Editor and select the “System Startup” button on the palette named “Stuff”
Editor "Script", "Stuff", "System Startup"

// Open the editor chosen from a pop-up menu
Editor PopupMenu "Script<return>Button<return>Palette<return>Icon<return>Icon Search"

EditorFont system variable
Description Gets or sets the font used in the OneClick Editor’s script pane. You can specify the

font by its name or ID number. The font resets to the default font (Geneva) after the
computer starts up.

Example // Set the font used by the Script Editor to Monaco 12-point
EditorFont = "Monaco"
EditorSize = 12

See Also EditorSize system variable (page 195), PopupMenuFont system variable (page 267),
PopupMenuSize system variable (page 267)

EditorSize system variable
Description Gets or sets the font size (in points) used in the OneClick Editor’s script pane. The

size resets to the default size (9-point) after the computer starts up.

Example // Set the font used by the Script Editor to Monaco 12-point
EditorFont = "Monaco"
EditorSize = 12

See Also EditorFont system variable (page 195), PopupMenuFont system variable (page 267),
PopupMenuSize system variable (page 267)
■ 195

CHAPTER 8 ■ EASYSCRIPT REFERENCE

Error system variable

19
Error system variable
Description Contains a run-time error number if an error occurred in the last statement executed,

or contains 0 (zero) if there was no error. For example, SelectMenu sets the Error
variable to 2 (Not Found) if it wasn’t able to find the specified menu or menu item.

Normally when a run-time error occurs in a script, the offending statement is skipped
and execution continues with the next statement. If you plan to share your scripts
with others, it’s a wise idea to anticipate and check for possible errors that could
occur while the script runs.

For example, assume your hard disk is named “Mac HD” and you wrote a script that
opens a file on the hard disk, then does some processing on the file. The script uses
the Open command and a full path, including the hard disk name, to open the file. If
you give the script to your co-worker, whose hard disk is named “Centris,” the script
won’t run correctly on his computer because the Open command won’t be able to
find the file (the path is different). The best place to check for this potential error is
right after the Open command.

Most commands (including If) set or clear the Error variable after they run, so the
value of Error is likely to change from one statement to the next. Because of this, you
should always store Error in a temporary variable and then refer to the temporary
variable, not Error, when dealing with the error condition.

Error 1: General Error (out of memory or resource problem)

AskButton Unable to load dialog

Message Unable to load dialog

Error 2: Not Found error

Button(button-name) Button not found

Call Button not found

DialogButton(button-name) Button not found

File(path) File, folder, or volume not found

Menu(menu-name) Menu not found
6 ■

CHAPTER 8 ■ EASYSCRIPT REFERENCE

Error system variable
Palette(palette-name) Palette not found

Process(process-name) Application not open

PopupPalette Palette not found

Scroll Window not found

SelectButton Button not found

SelectMenu Menu not found

SelectPopUp Menu not found

Sound Sound not found

Volume(volume-name) Volume not found

Window(window-name) Window not found

Error 3: Parameter error (generally means missing parameter)

/ (division) Divide by zero

Button.Help Invalid help

Button.Icon Invalid icon number or path

Button.Mode Invalid mode

Button.Text Invalid text

Find Invalid string

GetResources Invalid type

ListCount Invalid list

ListItems Invalid list

ListSort Invalid list

ListSum Invalid list

PopupMenu Invalid menu values

PopupPalette Invalid palette

Proper Invalid string

Error 2: Not Found error
■ 197

CHAPTER 8 ■ EASYSCRIPT REFERENCE

Exit command

19
Examples // Open the file "Status Report" on the desktop
// If the Open fails, show a message box explaining why the file wasn’t opened.
// Declare a temporary variable for storing the error code.
Variable theProblem
Open "Mac HD:Desktop Folder:Status Report"
theProblem = Error
// If Error is non-zero, then some kind of error occurred.
If theProblem

Message "An error occurred."
If theProblem = 2

// Error 2 is the generic "Not Found" error. Because we were trying to open a file,
// we can deduce that a Not Found error means that a volume, folder, or file
// wasn’t found.
// Now display a more descriptive message for the specific error that occurred.
Message "Status Report: File or path not found."

End If
// Stop script execution if an error occurred. (Otherwise the script continues.)
Exit

End If

See Also Testing and debugging a script (page 139), Checking for run-time errors (page 142)

Exit command
Syntax Exit [For | Repeat | While]

Description Exits from the current handler in the script, even if the handler or script hasn’t
reached the end yet. If the script was called from another script or handler, execution
continues in the calling script or handler following the Call statement.

When used with For, Repeat or While, Exit exits the loop and jumps to the statement
immediately following the End For, End Repeat, or End While statement.

Examples // Display the numbers 1 to 3, then display a message indicating the loop has finished
Variable X
For X = 1 To 50

Replace Invalid string

Schedule Invalid time

Trim Invalid string

Error 3: Parameter error (generally means missing parameter)
8 ■

CHAPTER 8 ■ EASYSCRIPT REFERENCE

False system variable
Message X
If X = 3

Exit For // prematurely exit the loop after 3 iterations instead of 50
End If

End For
Message "Loop is done!"

See Also Call command (page 171)

False system variable
Description Returns the number 0 (zero).

See Also True system variable (page 297)

File object
Description The File object lets you work with files and folders. You can get a list of all files in a

folder, or just the files of a specified type; get or change a file’s type and creator codes;
and read and write information in a text file.

The specifier for a File object is the file or folder’s path. When specifying a path to a
volume, include a colon (:) at the end of the volume name.

.Append Appends text to the end of an existing text file. See also File.Text (page 205).

// Append the contents of Text File 1 to the end of Text File 2
Variable fileText
fileText = File("Mac HD:Text File 1").Text
File("Mac HD:TextFile 2").Append = fileText

.Busy Returns a True (1) or False (0) value indicating whether or not the specified file is in
use. A file is considered in use when it is open for reading or writing. For example,
when Finder duplicates a file, the .Busy property of both the original file and the copy
returns True (1) until the copy is completed.

Use .Busy when you need to wait for an application to finish writing to a file and close
the file before your script does any processing with the file.

// Tell the application “Server App” to quit
■ 199

CHAPTER 8 ■ EASYSCRIPT REFERENCE

File object

20
Process("Server App").Quit
// Server App takes a while to quit. Our script will continue running before the app has actually
// finished closing its log file and quitting. We need to wait until Server App has has finished
// writing to its log file and has closed it before we do anything with it.
Wait NOT File("Mac HD:Server App:Server Log").Busy
// Server App is no longer using its log, so it’s now safe to open it and get the text of the log.
Variable theText
theText = File("Mac HD:Server App:Server Log").Text

.Count Returns the number of items in the specified folder. Both visible and invisible items
are counted.

// Display the number of files in the Control Panels folder
Message File(FindFolder "ctrl").Count

.CreationDate Returns the creation date and time of the specified file as a serial number (the number
of seconds elapsed since midnight, January 1, 1904). Use .CreationDate with
DateTime.DateString or DateTime.TimeString to convert the number of seconds to a
human-readable format.

To get the date and time a file was last modified, use the .ModificationDate property.

// Display the the date and time that “My Document” was created.
Variable crDate
crDate = File("Mac HD:My Document").CreationDate
Message "Created on " & (DateTime(crDate).DateString) & " " & (DateTime(crDate).TimeString)

.Creator Gets or sets the specified file’s creator code. A creator code is a four-character code
that indicates which application created the file; for example, the creator code for any
SimpleText file is “ttxt” and the creator code for any Photoshop file is “8BIM”. The
Finder uses a file’s creator code to figure out which icon to show in the Finder and
which application to open when you double-click the icon.

// Change the creator code of all TEXT and PICT files in Mac HD:Data to "ttxt" (for SimpleText).
Variable X, theFile, theFolder, fileList
theFolder = "Mac HD:Data:"
fileList = File(theFolder, "TEXT<return>PICT").List// get list of TEXT and PICT files in Mac HD:Data
For X = 1 to ListCount fileList

theFile = theFolder & (ListItems fileList, X) // theFile should be a full path
File(theFile).Creator = "ttxt"

End For

// Change the creator code of the dropped TEXT files to "R*ch" (for BBEdit).
// Skip the file if its type is something other than TEXT.
0 ■

CHAPTER 8 ■ EASYSCRIPT REFERENCE

File object
On DragAndDrop
Variable X, theFile, fileList
fileList = GetDragAndDrop
For X = 1 to ListCount fileList

theFile = ListItems fileList, X
If File(theFile).Kind = "TEXT"

File(theFile).Creator = "R*ch"
End If

End For
End DragAndDrop

.Delete The Delete message deletes the specified file or folder. Folders can be deleted only if
they are empty.

Caution The file is deleted immediately without going to the Trash first. Use
carefully.

.Exists Returns True (1) if the specified file or folder exists, otherwise False (0). Use this
property to determine if a file or folder exists before performing some other action on
the file or folder.

// The path to the SimpleText application is stored in the static variable simpleTextPath.
// If the file can’t be found, display a directory dialog so the user can locate SimpleText
// and store the new path. The While loop ensures that the user chooses a valid path to
// an application.
Variable Static simpleTextPath
While NOT File(simpleTextPath).Exists

Message "SimpleText can’t be found. Please locate it."
simpleTextPath = AskFile "APPL"

End While
Open simpleTextPath

.FileVersion Returns the version number of the specified file. If the file doesn’t contain a version
resource, .FileVersion returns the empty string ("").

// Display the version of QuickTime™ in use.
Variable thePath
thePath = (FindFolder "extn") & "QuickTime™" // QuickTime in the Extensions folder
Message "You’re using QuickTime™ version " & File(thePath).FileVersion
■ 201

CHAPTER 8 ■ EASYSCRIPT REFERENCE

File object

20
.Kind Gets or sets the specified file’s file type code. A file type code is a four-character code
that indicates the file’s format; for example, the file type code for a text file is “TEXT”
and the file type code for an application is “APPL”. When you’re not sure of a file’s type
code, use the File Type command in the Script Editor’s Parameter menu to choose a
file and insert it’s type code into the script.

The .Kind property returns the pseudo type “fold” if you specify a folder.

The most common use for the .Kind property is to get a file’s type and do something
with the file based on its type.

// Move all PICT files in the folder "Downloads" to the folder "Pictures"
Variable theFile, theFolder, theFileList, X
theFolder = "Mac HD:Downloads:"
theFileList = File(theFolder).List
For X = 1 to ListCount theFileList

theFile = theFolder & (ListItems theFileList, X)
If File(theFile).Kind = "PICT"

FinderMove theFile, "Mac HD:Pictures:"
End If

End For

Normally you won’t want to change a file’s type unless you know what you’re doing.
Changing a file’s type does not translate the file’s contents into another format: if you
change a Microsoft Word document (type “WDBN”) into a ClarisImpact report (type
“iRpt”), you can then open the file in ClarisImpact, but the program won’t understand
the file’s contents and will probably give an error message. The file still contains
Microsoft Word data in the file, not ClarisImpact data.

.KindString Returns a file’s type as it appears in the Kind column of Finder windows.

// Displays "SimpleText text document"
Variable theFile
theFile = "Mac HD:Desktop Folder:Test File"
File(theFile).Text = "Hello, world!"
Message File(theFile).KindString

// Unmounts all shared disks (file server volumes)
Variable X volList theVol
volList = Volume.List
For X = 1 To ListCount volList

theVol = ListItems volList, X
If File(theVol).KindString = "shared disk"

Volume(theVol).Unmount
2 ■

CHAPTER 8 ■ EASYSCRIPT REFERENCE

File object
End If
End For

.List Returns a list of files in the specified folder. A second file type specifier is optional:
specify one or more file type codes to get a list that contains only files of the specified
type(s).

Remember to use a colon at the end of the folder’s path to indicate the path is a
folder, not a file.

The .List property is read-only.

// Display a list of all the files in the folder Mac HD:Data.
Message File("Mac HD:Data:").List

// Display a list of the TEXT, PICT, and JPEG files in the folder Mac HD:Data.
Message File("Mac HD:Data:", "TEXTPICTJPEG").List

// Open all the TIFF documents in the folder Mac HD:Scans.
Variable theFile, theListOfFiles
theListOfFiles = File("Mac HD:Scans:", "TIFF").List // put the list of TIFFs in theListOfFiles
For theFile = 1 to ListCount theListOfFiles // loop through the list and open each file

Open "Mac HD:Scans:" & (ListItems theListOfFiles, theFile)
End For

.Locked Gets or sets the specified file’s locked status (the same as the Locked checkbox in the
file’s Get Info window). Set to 1 to lock or zero to unlock.

// Lock a file
File("Mac HD:File A").Locked = 1

// Unlock a file
File("Mac HD:File A").Locked = 0

.ModificationDate

Returns the modification date and time of the specified file as a serial number (the
number of seconds elapsed since midnight, January 1, 1904). Use .CreationDate with
DateTime.DateString or DateTime.TimeString to convert the number of seconds to a
human-readable format.

To get the date and time a file was created, use the .CreationDate property.

// Display the the date and time that “My Document” was last modified
■ 203

CHAPTER 8 ■ EASYSCRIPT REFERENCE

File object

20
Variable mdDate
mdDate = File("Mac HD:My Document").ModificationDate
Message "Modified " & (DateTime(mdDate).DateString) & " " & (DateTime(mdDate).TimeString)

// Compare the modification times of two dropped files and display the difference in seconds.
On DragAndDrop

Variable file1, file2, md1, md2
file1 = GetDragAndDrop 1
file2 = GetDragAndDrop 2
If NOT (file1 AND file2)

Message "Drop two files on this button to compare their modification dates."
Exit

End If
md1 = File(file1).ModificationDate
md2 = File(file2).ModificationDate
If md1 > md2

Message file2 & " is " & (md1 - md2) & " seconds older than " & file1
Else

Message file1 & " is " & (md2 - md1) & " seconds older than " & file2
End If

End DragAndDrop

.Name Sets the name of (renames) the specified file, or gets the name of the file at the
specified path.

// Change the name of file “Test File 1” to “Backup File”
File("Mac HD:Data:Test File 1").Name = "Backup File"

// Display just the name (not the full path) of the dropped file or folder
On DragAndDrop

Message File(GetDragAndDrop).Name
End DragAndDrop

// Add the extension ".jpg" to all the JPEG files in the dropped folder
Variable theDroppedFolder, fileList, theFile, X
// Get the full path of the dropped folder
theDroppedFolder = GetDragAndDrop 1
// Get a list of JPEG files in the folder, ignoring other file types
fileList = File(theDroppedFolder, "JPEG").List
// Loop through all JPEG files in the list
For X = 1 To ListCount fileList

theFile = ListItems fileList, X // Get a single filename from the list
File(theDroppedFolder & theFile).Name = theFile & ".jpg" // Rename the file

End For
4 ■

CHAPTER 8 ■ EASYSCRIPT REFERENCE

File object
.NewFolder The NewFolder message creates a new folder at the specified path. A colon (:) at the
end of the folder name is optional.

If OneClick can’t find the volume or folder where the new folder should be created,
then no folder is created.

// Create a new folder named Received Files in the current directory
File("Received Files").NewFolder

// Create a Documents folder inside the WordPerfect folder. The Applications and
// WordPerfect folders must already exist (only the last folder in the path gets created).
File("Mac HD:Applications:WordPerfect 3.1:Documents:").NewFolder

// Create a new, untitled folder on the desktop
File((FindFolder "desk") & "untitled").NewFolder

.Original Returns the path to the original file of an alias. If you specify a file that isn’t an alias,
the path of the specifier is returned. If the alias is broken (cannot be resolved),
.Original returns the empty string (“”).

// When an alias is dropped on the button, display the path to the original file
On DragAndDrop

Message File(GetDragAndDrop).Original
End DragAndDrop

.Size Returns the size in bytes of the specified file.

// When a file is dropped on the button, display the size of the file
On DragAndDrop

Message File(GetDragAndDrop).Size
End DragAndDrop

.Text Reads text from the specified file or writes text to a text file. You can read text
(actually, the data fork) from any file and store it in a variable, allowing you to work
with text in a file just like any other string value.

You can also write text to a text file by assigning a value to the file’s .Text property. To
prevent accidently overwriting a non-text file’s data fork, you can only write text to a
text file (a file whose type code is “TEXT”). No text is written if you try to write text to
a non-text file.

If you write text to a file that doesn’t exist, OneClick creates a new SimpleText file and
writes the text to it. You can then change the type and creator codes, if you prefer,
■ 205

CHAPTER 8 ■ EASYSCRIPT REFERENCE

File object

20
after the new file is created. If you create a new file in this manner, the folder
containing the file (if specified) must exist or else OneClick won’t create the file.
OneClick will not create any non-existent folders in the file’s path.

// Create a new file on the desktop called "My Text File" and put the text "Hello there" in it
// If "My Text File" already exists, the text in it is overwritten
File("Mac HD:Desktop Folder:My Text File").Text = "Hello there"

// Copy the text from "File A" to "File B", overwriting the text already in "File B"
File("File B").Text = File("File A").Text

// Append the contents of "Mac HD:File B" to "Mac HD:File A"
File("Mac HD:File A").Text = File("Mac HD:File A").Text & File("Mac HD:File B").Text

// Display a list box containing interesting information from the System file.
// This just shows the System file’s data fork in the list. There will be some garbage in the text.
Variable theList, theResponse
theList = File(SystemFolder & "System").Text
theResponse = AskList theList

// Search all files in a directory for a text string, then display a list box showing only the files
// that contain the search string
Variable theDirectory, theTotalFileList, theFoundFileList, theResponse, theSearchString
Variable theCurrentFile, X
theDirectory = AskFile "fold" // choose the directory to search
theSearchString = AskText "Type a string to search for:" // get the string to find
theTotalFileList = File(theDirectory).List
For X = 1 to ListCount theTotalFileList

theCurrentFile = theDirectory & (ListItems theTotalFileList, X)
If Find theSearchString, File(theCurrentFile).Text

theFoundFileList = theFoundFileList & theCurrentFile & "<return>"
End If

End For
theResponse = AskList theFoundFileList, "Search results:"

.Visible Gets or sets the specified file or folder’s visibility. Set to 1 to make the specified file or
folder visible or set to zero to make it invisible. Invisible files and folders do not
appear in Finder windows or in most Open and Save dialog boxes.

Caution Once you make an item invisible, you won’t be able to access it except in
applications that let you see invisible items. Don’t make the System folder or any of its
contents invisible or unpredictable results may occur.
6 ■

CHAPTER 8 ■ EASYSCRIPT REFERENCE

FileClose command
// Make the file “File A” invisible
File("Mac HD:File A").Visible = 0

// Make an invisible file visible
File("Mac HD:File A").Visible = 1

FileClose command
Syntax FileClose refNum

Description Closes a file opened with FileOpen.

Examples Variable theFile, theData, refNum
theFile = (FindFolder "desk") & "FileIO Demo"
File(theFile).Text = "This is some text in the FileIO Demo file."
refNum = FileOpen theFile
theData = FileRead refNum, "all"
FileClose refNum
Message theData

Author Info FileClose, part of FileIO Extension
Copyright © 1998 Life OnLine Software (lr). All rights reserved.

FileGetEOF function
Syntax FileGetEOF refNum

Description Returns the end-of-file (length) of a file opened with FileOpen.

Examples Variable theFile, refNum, theLength
theFile = (FindFolder "desk") & "FileIO Demo"
File(theFile).Text = "This is some text in the FileIO Demo file."
refNum = FileOpen theFile
theLength = FileGetEOF refNum
Message "The file contains " & theLength & " bytes of data."
FileClose refNum

Author Info FileGetEOF, part of FileIO Extension
Copyright © 1998 Life OnLine Software (lr). All rights reserved.
■ 207

CHAPTER 8 ■ EASYSCRIPT REFERENCE

FileGetPos function

20
FileGetPos function
Syntax FileSetPos refNum, mark

Description Gets the mark (current position) in a file opened with FileOpen. Future FileRead and
FileWrite operations always begin at the file’s current mark. When FileOpen opens a
file, the file’s mark is set to 0 (zero). After reading or writing data in the file, the mark
is set following the last character read or written.

Examples Variable theFile, refNum, theData, mark
theFile = (FindFolder "desk") & "FileIO Demo"
File(theFile).Text = "First line" & Return & "Second line"
refNum = FileOpen theFile
theData = FileRead refNum, "until", Return // Reads data until the first carriage return
mark = FileGetPos refNum // Gets the current position in the file
FileClose refNum
Message "The first carriage return occurs at byte " & mark

Author Info FileGetPos, part of FileIO Extension
Copyright © 1998 Life OnLine Software (lr). All rights reserved.

FileOpen function
Syntax FileOpen path-to-file

Description Opens a file’s data fork for future reading or writing and returns a reference number
for the opened file. All other FileIO commands and functions use the file’s reference
number to access the open file. The file remains open until it is closed using
FileClose.

Examples Variable theFile, theData, refNum
theFile = (FindFolder "desk") & "FileIO Demo"
File(theFile).Text = "This is some text in the FileIO Demo file."
refNum = FileOpen theFile
theData = FileRead refNum, "all"
FileClose refNum
Message theData

Author Info FileOpen, part of FileIO Extension
Copyright © 1998 Life OnLine Software (lr). All rights reserved.
8 ■

CHAPTER 8 ■ EASYSCRIPT REFERENCE

FileRead function
FileRead function
Syntax FileRead refNum, "all"

FileRead refNum, "line"
FileRead refNum, "until", character
FileRead refNum, "bytes", numberOfBytes

Description Reads data from the current mark (position) in a file opened with FileOpen and
returns the data read from the file. After reading data, the file’s mark is set to the byte
following the last byte read.

FileRead can read data in four different modes. The first parameter is a string that
indicates which mode to use.

Examples Variable theFile, theData, refNum
theFile = (FindFolder "desk") & "FileIO Demo"
File(theFile).Text = "First line" & Return & "Second line"

// Read the file until the first "r"
refNum = FileOpen theFile
theData = FileRead refNum, "until", "r"
FileClose refNum
Message theData

// Read the whole file
refNum = FileOpen theFile
theData = FileRead refNum, "all"
FileClose refNum
Message theData

Mode string Meaning

all Reads all data from the current mark to the end of the file. After reading, the mark
is set to one byte past the end of the file.

line Reads data from the current mark up to (and including) the next carriage return
character. After reading, the mark is set to the beginning of the next line.

until Reads data from the current mark up to (and including) the specified character.
After reading, the mark is set to the byte following the last byte read.

bytes Reads the specified number of bytes beginning at the current mark. After reading,
the mark is set to the byte following the last byte read.
■ 209

CHAPTER 8 ■ EASYSCRIPT REFERENCE

FileSetEOF command

21
// Read the whole file from the current mark (4)
refNum = FileOpen theFile
FileSetPos refNum, 4
theData = FileRead refNum, "all"
FileClose refNum
Message theData

// Read a single line
refNum = FileOpen theFile
theData = FileRead refNum "line"
Message theData

// Read 5 bytes. The file is still open, so the reading begins following the first line.
theData = FileRead refNum, "bytes", 5
FileClose refNum
Message theData

Author Info FileRead, part of FileIO Extension
Copyright © 1998 Life OnLine Software (lr). All rights reserved.

FileSetEOF command
Syntax FileSetEOF refNum

Description Sets the end-of-file (length) of a file opened with FileOpen.

The SetEOF function sets the end-of-file (length in bytes) of the specified file.

If you set the new end-of-file to a number less than the current end-of-file, the file is
truncated. Setting the end-of-file to 0 (zero) deletes all data in the file.

If you set the new end-of-file beyond the current end-of-file, the file size increases on
the volume to accomodate the new size. The newly-allocated space at the end of the
file contains garbage data (whatever data happened to be on the volume where the
new space was allocated).

Note If not used carefully, FileSetEOF can potentially delete data in the specified
file. Don't use FileSetEOF unless you are confident with reading and writing directly
to files.

Examples Variable theFile, theData, refNum
0 ■

CHAPTER 8 ■ EASYSCRIPT REFERENCE

FileSetPos command
theFile = (FindFolder "desk") & "FileIO Demo"
File(theFile).Text = "This is some text in the FileIO Demo file."
refNum = FileOpen theFile
FileSetEOF refNum, 17 // Set the length of the file to 17, truncating the rest of the file
theData = FileRead refNum, "all"
FileClose refNum
Message theData

Author Info FileSetEOF, part of FileIO Extension
Copyright © 1998 Life OnLine Software (lr). All rights reserved.

FileSetPos command
Syntax FileSetPos refNum, mark

Description Sets the current mark (position) in a file opened using FileOpen. Use FileSetPos to
move the mark forward or backward in an open file; future FileRead and FileWrite
operations always begin at the file’s current mark. To set the mark to the beginning of
the file, set the mark to 0 (zero). To set the mark to the byte following the last byte in
the file, set the mark to the file’s length (obtainable using FileGetEOF).

Examples Variable theFile, refNum, theData
theFile = (FindFolder "desk") & "FileIO Demo"
File(theFile).Text = "First line" & Return & "Second line"
refNum = FileOpen theFile
FileSetPos refNum, 6 // Sets the file’s mark to the byte following the 6th byte
theData = FileRead refNum, "all"
FileClose refNum
Message theData

Author Info FileSetPos, part of FileIO Extension
Copyright © 1998 Life OnLine Software (lr). All rights reserved.

FileWrite command
Syntax FileWrite refNum, data

Description Writes data to a file opened with FileOpen, beginning at the current mark (position).
After writing data, the file’s mark is set to the byte following the last byte written.
■ 211

CHAPTER 8 ■ EASYSCRIPT REFERENCE

Find function

21
Note If not used carefully, FileWrite can potentially overwrite data in the specified
file. Don't use FileWrite unless you are confident with reading and writing directly to
files.

Examples Variable theFile, theData, refNum
theFile = (FindFolder "desk") & "FileIO Demo"
theData = "First line" & Return & "Second line"

refNum = FileOpen theFile
FileWrite refNum, theData // write the data to the file
FileClose refNum

refNum = FileOpen theFile
FileSetPos refNum, 11 // set the mark (position) for the next read/write
FileWrite refNum, "••••••" // Write text starting at the 12th byte (following the mark at 11)
FileSetPos refNum, 0 // reset the mark to the beginning of the file
theData = FileRead refNum, "all"
FileClose refNum
Message theData

Author Info FileWrite, part of FileIO Extension
Copyright © 1998 Life OnLine Software (lr). All rights reserved.

Find function
Syntax Find find-text, in-text

Description Returns the character position of find-text in in-text. If find-text is not found, Find
returns zero (false).

Find ignores case when searching for matching text.

Examples // Types 5
Type Find "is", "Now is the time"

// Types 0
Type Find "and", "Now is the time"

See Also Replace function (page 278)
2 ■

CHAPTER 8 ■ EASYSCRIPT REFERENCE

FindApp function
FindApp function
Syntax FindApp creator-code

Description Returns the full path to the application with the specified creator code. The FindApp
function is helpful when you want to open a certain application but you don’t know
where it’s located.

FindApp will find the application on any mounted volume. In addition to
applications, FindApp also finds other executable files including desk accessories,
control panels, Control Strip modules, and so on.

Note An easy way to find a file’s creator code is to run Find File, choose “creator”
from the pop-up menu, and drag the file from the Finder to the text box area. You can
also use ResEdit to find a file’s creator.

Examples // Open Find File
Open FindApp ("fndf")

// With BBEdit, open the “Read Me” file located on the desktop
Open FindFolder ("desk") & "Read Me", FindApp ("R*ch")

FinderAlias command
Syntax FinderAlias [path-list,] destination [, wait-for-completion]

Description Tells the Finder to make aliases of items specified in path-list in the destination folder.
If you omit path-list, then the Finder makes aliases of the selected icon(s) in the
destination folder.

Path-list may contain one or more files, folders, or a combination of files and folders.

If the destination folder is the same as the source folder, then the Finder simply makes
an alias of the item and adds “alias” to the end of the alias’ name.

In Mac OS 8 and later, the Finder’s alias operation will begin and run in parallel with
your script, allowing your script to continue running while the Finder makes aliases.
If you include 1 (True) in the optional wait-for-completion parameter, OneClick waits
■ 213

CHAPTER 8 ■ EASYSCRIPT REFERENCE

FinderCopy command

21
until the Finder has completed the operation before resuming execution of the script.
Always include 1 in the wait-for-completion parameter if your script expects the alias
to exist after the FinderAlias statement.

Examples // Make aliases of the selected Finder icons in the Apple Menu Items folder
FinderAlias "Mac HD:System Folder:Apple Menu Items:"

// Make an alias of the file "Status Report" (on the desktop) in the folder "Current Work"
FinderAlias "Mac HD:Desktop Folder:Status Report", "Mac HD:Current Work:"

See Also Alias function (page 150), FinderCopy command (page 214)

FinderCopy command
Syntax FinderCopy [path-list,] destination [, wait-for-completion]

Description Tells the Finder to copy the items specified in path-list to the destination folder. If you
omit path-list, then the Finder copies the selected icon(s) to the destination folder.

Path-list may contain one or more files, folders, or a combination of files and folders.
If you specify a folder, FinderCopy copies the folder and all of its contents.

If the destination folder is the same as the source folder, then the Finder simply
duplicates the item and adds “copy” to the end of the new file’s name.

In Mac OS 8 and later, the Finder’s copy operation will begin and run in parallel with
your script, allowing your script to continue running while the Finder copies files. If
you include 1 (True) in the optional wait-for-completion parameter, OneClick waits
until the Finder has completed the copy before resuming execution of the script.
Always include 1 in the wait-for-completion parameter if your script expects the
copied file to exist after the FinderCopy statement.

You can use FinderCopy or FinderMove with FindFolder to copy or move items to
special folders such as the System Folder, Desktop Folder, Trash, and so on.

Caution FinderCopy and FinderMove replace existing files without asking. If you copy or move
File A to Folder B, and File A already exists in the folder, the file is replaced with the
version being copied or moved. The Finder moves the file being replaced to the Trash.
If you don’t want this to occur, use File.Exists to see if the file already exists in the
destination folder.

Examples // Copy the selected Finder icons to the folder "For Review"
4 ■

CHAPTER 8 ■ EASYSCRIPT REFERENCE

FinderMove command
// First determine if the proper Finder version is running
If Gestalt "fndr", 3

FinderCopy "Mac HD:For Review:"
Else

Beep
Message "Requires newer version of Finder."

End If

// Copy the file "Status Report" on the desktop to the folder "Backups"
FinderCopy "Mac HD:Desktop Folder:Status Report", "Mac HD:Backups:"

// Copy all the items in the "Stuff to Post" folder to the "Items Posted" folder
FinderCopy File("Mac HD:Internet:Stuff to Post:").List, "Mac HD:Internet:Items Posted:"

See Also FinderMove command (page 215), FindFolder function (page 216)

FinderMove command
Syntax FinderMove [path-list,] destination [, wait-for-completion]

Description FinderMove works just like FinderCopy, except it moves files instead of copying them.
See the description of FinderCopy above.

Examples // Move the selected Finder icons to the Trash
// First determine if the proper Finder version is running
If Gestalt "fndr", 3

FinderMove FindFolder "trsh"
Else

Beep
Message "Requires newer version of Finder."

End If

// Move all PICT files in the folder "Downloads" to the folder "Pictures"
Variable theFile, theFileList, X
theFileList = File("Mac HD:Downloads:").List
For X = 1 to ListCount theFileList

theFile = ListItems theFileList, X
If File(theFile).Kind = "PICT"

FinderMove theFile, "Mac HD:Pictures:"
End If

End For

See Also FinderCopy command (page 214), FindFolder function (page 216)
■ 215

CHAPTER 8 ■ EASYSCRIPT REFERENCE

FindFolder function

21
FindFolder function
Syntax FindFolder folder-code

Description Returns the full path to the specified folder. Folder-code is a four-character folder
abbreviation.

Use the FindFolder function instead of typing the paths for special folders such as
Desktop Folder, System Folder, or Trash in your scripts. Not only might it save you
some typing, but it also allows your scripts to work with non-English versions of the
system software. (Folders have different names in different languages.) Also, future
versions of the system software may put the folders in different locations; FindFolder
will still be able to determine the correct path to the folder given the folder’s
abbreviation.

Following are the folder codes to use, the default path to each folder, and the
minimum Mac OS version that recognizes each folder code. The default paths assume
the startup disk is named “HD.”

Code Default path to folder OS version

root HD: 8.0

aexƒ HD:Apple Extras: 8.0

apps HD:Applications: 8.0

astƒ HD:Assistants: 8.0

flnt HD:Cleanup At Startup: 8.0

desk HD:Desktop Folder: 7.x

docs HD:Documents: 8.0

ilgf HD:Installer Logs: 8.5

intƒ HD:Internet: 8.5

morƒ HD:Mac OS Read Me Files: 8.0

odst HD:Stationery: 8.0

macs HD:System Folder: 7.x

appr HD:System Folder:Appearance: 8.5

dtpƒ HD:System Folder:Appearance:Desktop Pictures: 8.5

snds HD:System Folder:Appearance:Sound Sets: 8.5

thme HD:System Folder:Appearance:Theme Files: 8.1

amnu HD:System Folder:Apple Menu Items: 7.x

rapp HD:System Folder:Apple Menu Items:Recent Applications: 8.5
6 ■

CHAPTER 8 ■ EASYSCRIPT REFERENCE

FindFolder function
rdoc HD:System Folder:Apple Menu Items:Recent Documents: 8.5

rsvr HD:System Folder:Apple Menu Items:Recent Servers: 8.5

spki HD:System Folder:Apple Menu Items:Speakable Items: 8.5

asup HD:System Folder:Application Support: 8.0

prof HD:System Folder:ColorSync Profiles: 8.1

cmnu HD:System Folder:Contextual Menu Items: 8.0

ctrD HD:System Folder:Control Panels (Disabled): 8.0

ctrl HD:System Folder:Control Panels: 7.x

sdev HD:System Folder:Control Strip Modules: 8.0

oded HD:System Folder:Editors: 8.0

odod HD:System Folder:Editors:OpenDoc: 8.0

odsp HD:System Folder:Editors:OpenDoc:OpenDoc Shell Plug-Ins: 8.0

extD HD:System Folder:Extensions (Disabled): 8.0

extn HD:System Folder:Extensions: 7.x

fnds HD:System Folder:Extensions:Find: 8.5

walk HD:System Folder:Extensions:Location Manager Modules: 8.1

ƒmod HD:System Folder:Extensions:Modem Scripts: 8.0

odlb HD:System Folder:Extensions:OpenDoc Libraries: 8.0

ppdf HD:System Folder:Extensions:Printer Descriptions: 8.0

fvoc HD:System Folder:Extensions:Voices: 8.0

favs HD:System Folder:Favorites: 8.1

font HD:System Folder:Fonts: 7.x

ƒhlp HD:System Folder:Help: 8.0

issf HD:System Folder:Internet Search Sites: 8.5

laun HD:System Folder:Launcher Items: 8.5

pref HD:System Folder:Preferences: 7.x

trip HD:System Folder:Preferences:Location Manager Prefs: 8.1

fall HD:System Folder:Preferences:Location Manager Prefs:Locations: 8.1

oclk HD:System Folder:Preferences:OneClick Folder: (special)

prnt HD:System Folder:PrintMonitor Documents: 7.x

ƒscr HD:System Folder:Scripting Additions: 8.0

scrƒ HD:System Folder:Scripts: 8.5

fasf HD:System Folder:Scripts:Folder Action Scripts: 8.5

shdD HD:System Folder:Shutdown Items (Disabled): 8.0

shdf HD:System Folder:Shutdown Items: 7.x

strD HD:System Folder:Startup Items (Disabled): 8.0

Code Default path to folder OS version
■ 217

CHAPTER 8 ■ EASYSCRIPT REFERENCE

FKey command

21
Items in the Desktop Folder appear on the desktop.

Notes Newer versions of Mac OS may support additional folder codes. FindFolder will
automatically support the new codes.

The folder code “oclk” isn’t part of the Mac OS but can be used to specify the path to
the OneClick Folder in the Preferences folder.

To type the character “ƒ” used in some folder codes, press Option-f.

Examples // Make an alias of the selected icon, then move the alias to the Apple Menu Items folder.
// After choosing Make Alias, the new alias is automatically selected and gets moved.
SelectMenu "File", "Make Alias"
FinderMove FindFolder "amnu"

// Store the name of the startup disk in the global variable HD.
// FindFolder "macs" returns a path to the System folder.
// The startup disk name is the first item in the path.
Variable Global HD
ListDelimiter = ":"
HD = ListItems FindFolder "macs", 1

FKey command
Syntax FKey FKey-number

Description Calls the specified FKey. FKey-number must be a number from 0 (zero) to 9.

Examples // Captures the screen
FKey 3

strt HD:System Folder:Startup Items: 7.x

macD HD:System Folder:System Extensions (Disabled): 8.0

ƒtex HD:System Folder:Text Encodings: 8.0

temp HD:Temporary Items: 7.x

fbcf HD:TheFindByContentFolder: 8.5

empt HD:Trash: (network trash folder) 7.x

trsh HD:Trash: (desktop trash can) 7.x

utiƒ HD:Utilities: 8.0

Code Default path to folder OS version
8 ■

CHAPTER 8 ■ EASYSCRIPT REFERENCE

FontMenu function
FontMenu function
Syntax FontMenu font-list [, cache-file]

Description Pops up a WYSIWYG font manu and returns the name of the selected font. If you
include the path to a cache file, FontMenu stores the bitmap for the font menu in the
file so it doesn't need to be regenerated after restarting the system.

Examples On MouseDown
Variable theFont
theFont = FontMenu (GetResources "FONT"), "Mac HD:Desktop Folder:MyFontCache"
SelectMenu "Font", theFont

End MouseDown

For, Next For, Exit For, End For commands
Syntax For index-variable = start To end

statements
[Next For]
[Exit For]

End For

Description Repeats statements between For and End For a number of times. When the script first
enters the For loop, index-variable is set to the value of start. Each time through the
loop, index-variable is incremented by 1 and compared to the end value. If index-
variable is greater than the end value, the loop terminates and execution continues
with statements following End For. The total number of times the loop runs is end –
start + 1.

If end is greater than start, then the For loop counts down from end to start,
subtracting 1 from index-variable each time through the loop. For example:

For X = 1 to 3 // goes 1, 2, 3
For X = 3 to 1 // goes 3, 2, 1

You can use Next For to skip to the next iteration of the For loop, and you can use Exit
For to prematurely exit the loop and continue executing the statements following End
For.

For loops can be nested (you can have a For loop within a For loop).

Examples Variable i
■ 219

CHAPTER 8 ■ EASYSCRIPT REFERENCE

Gestalt function

22
For i = 1 to 5
Message i

End For

Variable j
For j = 15 to 20

If j = 17
Next For // don’t display a message for #17

End If
Message j

End For

See Also Repeat, Next Repeat, Exit Repeat, End Repeat commands (page 277)

Gestalt function
Syntax Gestalt selector [, bit]

Description Returns information about the hardware and system software configuration. You can
use Gestalt to find out if a particular hardware or software component is available.
Gestalt is based on the Macintosh toolbox call of the same name.

Selector is a four-character string that identifies the category of information you want
to retrieve. Use the optional bit specifier (0–31) to get an individual bit in the result
code as a True (1) or False (0) value.

An Apple-defined selector codes fall into two categories: environmental selectors,
which supply specific environmental information you can use to control the behavior
of your script, and informational selectors, which supply information you can’t use to
determine what hardware or software features are available. You can use one of the
selector codes defined by Apple (listed in the “Constants” section beginning on page
1-14 of Inside Macintosh: Operating System Utilities) or a selector code defined by a
third-party product.

Examples If (Gestalt "kbd ") = 4
Message "You are using an Extended keyboard"

Else
Message "You are not using an Extended keyboard"

End If

If Gestalt "ascr", 0
Message "AppleScript is available."

End If
0 ■

CHAPTER 8 ■ EASYSCRIPT REFERENCE

GetDragAndDrop function
If Gestalt "drag", 0
Message "Drag and Drop support is available."

End If

If Gestalt "fndr", 3
Message "OSL Compliant Finder is running."

End If

See Also Inside Macintosh: Operating System Utilities, page 1–31

GetDragAndDrop function
Syntax GetDragAndDrop [item]

Description Returns a list of paths of icons dropped on the button. If you drop more than one
icon on the button, you can get individual paths from the list using the optional item
(the index number of the dropped item).

If you drag and drop text on the button, GetDragAndDrop returns the dropped text as
a string.

You must use the GetDragAndDrop function within a DragAndDrop handler to
retrieved the dropped information. You cannot drop icons or text on a button that
doesn’t have a DragAndDrop handler.

Examples // Changes the dropped text to all uppercase and pastes it back into the
// application, replacing the current selection (the dropped text)
On DragAndDrop

// save the current contents of the Clipboard
Variable tempClip
tempClip = Clipboard
// change dropped text to uppercase and put it on the Clipboard
Clipboard = Upper GetDragAndDrop
// paste the uppercase text (replacing the dropped text) and restore the Clipboard
SelectMenu "Edit", "Paste"
Clipboard = tempClip

End DragAndDrop

// Changes the creator of all dropped TEXT and PICT files to “ttxt” (SimpleText).
// This causes SimpleText to open the TEXT or PICT file when you double-click the file’s icon.
On DragAndDrop

Variable fileCount, X, theFile
// get the number of files dropped
■ 221

CHAPTER 8 ■ EASYSCRIPT REFERENCE

GetICHelpers function

22
fileCount = ListCount GetDragAndDrop
For X = 1 to fileCount

// get the path of the dropped file from the list of dropped files
theFile = GetDragAndDrop X
If (File(theFile).Kind = "TEXT") OR (File(theFile).Kind = "PICT")

File(theFile).Creator = "ttxt"
End If

End For
End DragAndDrop

See Also Using Drag and Drop (page 131), DragAndDrop handler (page 192)

GetICHelpers function
Syntax GetICHelpers

Description Returns a list of all the helper applications from Internet Preferences. Each item in the
list contains the text “Helper•” followed by a protocol scheme, such as http, mailto,
ftp, and so on. Use GetICPref to get a path to the preferred helper application for a
specific item in the list.

Examples Variable helperList, theHelper, pathList, X
helperList = GetICHelpers
For X = 1 To ListCount helperList

theHelper = ListItems helperList, X
pathList = pathList & theHelper & " -- " & (GetICPref theHelper) & Return

End For
X = AskList pathList, "Paths to helper applications stored in Internet Preferences:"

See Also GetICPref function (page 222), SetICPref command (page 291)

Author Info GetICHelpers, part of IC Extension
Copyright © 1998 Life OnLine Software (lr). All rights reserved.

GetICPref function
Syntax GetICPref preferenceKey

Description Returns the value of the specified preference from Internet Preferences. Only simple
text string preferences can be retrieved; complex preferences (such as font settings,
color settings, extension mappings, and so on) cannot be retrieved.
2 ■

CHAPTER 8 ■ EASYSCRIPT REFERENCE

GetICPref function
Following is a table of preference keys supported by Internet Config 2.0 and
accessible with GetICPref and SetICPref. Other applications (such as Microsoft
Internet Explorer) may also store data in the Internet Preferences file; preference keys
for those applications can be accessed through GetICPref and SetICPref but are not
listed here.

IC preference key Value

ArchiePreferred preferred Archie server

DownloadFolder path to the folder where newly downloaded files are put

Email user@host.domain, email address of user, ie. return address

FingerHost host.domain, default finger server

FTPHost host.domain, default FTP server

FTPProxyAccount second level FTP proxy authorization

FTPProxyHost host.domain

FTPProxyPassword password for FTPProxyUser

FTPProxyUser first level FTP proxy authorization

GopherHost host.domain, default Gopher server

GopherProxy host.domain

Helper• helpers for URL schemes

HTTPProxyHost host.domain

InfoMacPreferred preferred Info-Mac server

IRCHost host.domain, Internet Relay Chat server

LDAPSearchbase LDAP thing

LDAPServer host.domain

MacSearchHost host for MacSearch queries

MailAccount user@host.domain, POP3 or IMAP account from which to fetch mail

MailHeaders extra headers for outgoing mail messages

MailPassword password for MailAccount

NewMailSoundName sound to play when new mail arrives
■ 223

CHAPTER 8 ■ EASYSCRIPT REFERENCE

GetICPref function

22
Examples Variable userName, signature
userName = GetICPref "RealName"
signature = GetICPref "Signature"

See Also GetICHelpers function (page 222), SetICPref command (page 291)

Author Info GetICPref, part of IC Extension
Copyright © 1998 Life OnLine Software (lr). All rights reserved.

NewsAuthPassword password for NewsAuthUsername

NewsAuthUsername user name for NNTP news servers that require authorization

NewsHeaders extra headers for outgoing news messages

NNTPHost host.domain, NNTP server

NTPHost host.domain, Network Time Protocol (NTP)

Organization for X-Organization string in outgoing mail and news messages

PhHost host.domain, default Ph server

Plan default response for finger servers

QuotingString used to quote responses in news and mail (usually “>”)

RealName real name of user

Signature appended to outgoing mail and news messages

SMTPHost host.domain, SMTP server

SnailMailAddress preferred postal mailing address

SocksHost host.domain

TelnetHost host.domain, default Telnet address

UMichPreferred preferred UMich server

WebSearchPagePrefs URL, user’s default search page

WhoisHost host.domain, default whois server

WWWHomePage URL, user’s default web page

IC preference key Value
4 ■

CHAPTER 8 ■ EASYSCRIPT REFERENCE

GetPalettes function
GetPalettes function
Syntax GetPalettes file

Description Returns the list of palette names within file. Palettes that are flagged as visible have a
“*” character as a prefix.

Examples // Import one or more palettes from the file dropped on the button.
On DragAndDrop

Variable theFile, palList, selectedList, palName, theChoice, X
theFile = GetDragAndDrop 1
// Make sure the dropped file is really a palette file.
If File(theFile).Kind <> "Btns"

Message "That doesn’t look like a palette file."
Exit

End If
// Here is where we get the names of the palettes in the file.
palList = GetPalettes theFile
// Let the user choose which palettes to import.
selectedList = AskList palList, "Import which palettes?"
If selectedList

theChoice = AskButton "Import as Global?", "Global", Process.Name
// Import each palette selected in the list
For X = 1 To ListCount selectedList

palName = ListItems selectedList, X
// Remove the * prefix if it exists.
If (SubString palName, 1, 1) = "*"

palName = SubString palName, 2, Length palName
End If
// Import the palette
If theChoice = 1 // global

Palette(palName).New Global = palName, theFile
Else // app-specific

Palette(palName).New = palName, theFile
End If
Palette(palName).Visible = 1

End For
End If

End DragAndDrop

GetResources function
Syntax GetResources resource-type
■ 225

CHAPTER 8 ■ EASYSCRIPT REFERENCE

GetScrap function

22
Description Returns a list of names of all available resources of the specified type. Resource-type is
a 4-character resource type (the type must be exactly 4 characters). Suggested types
are “FONT”, “DRVR”, and “snd ” (note the trailing space).

Examples // Types the names of all available fonts.
Type GetResources "FONT"

// Types the names of all items in the Apple menu.
Type GetResources "DRVR"

// Shows a pop-up menu of available sounds and plays the selected sound.
Sound PopupMenu GetResources "snd "

GetScrap function
Syntax GetScrap resourceType

Description Returns the data of the specified resource type from the Clipboard. Use GetScrap and
SetScrap instead of the Clipboard system variable when you want to work with data
types other than plain text.

Examples // Get the picture on the Clipboard and store it in a variable
Variable thePictureData
thePictureData = GetScrap “PICT"

// Get the TEXT/styl (styled text) resource pair from the Clipboard and store it in a resource file
// Copy some styled text to the Clipboard from a styled-text-aware application
// (such as SimpleText or AppleWorks) before running this script
Variable theText, theStyle, theFile
theFile = "Mac HD:Desktop Folder:My Resource File"
theText = GetScrap "TEXT"
theStyle = GetScrap "styl"
SetResource theFile, theText, "TEXT", 128
SetResource theFile, theStyle, "styl", 128

Author Info GetScrap, part of Scrap Extension
Copyright © 1999 Life OnLine Software (lr). All rights reserved.

GetWindowText command
Syntax GetWindowText text [, window-specifier [, left, top, right, bottom]]
6 ■

CHAPTER 8 ■ EASYSCRIPT REFERENCE

GetWindowText command
Description Captures the text from the specified window, or the frontmost window if no window
is specified, and puts the text in a variable.

To specify that only the text from a portion of the window be captured, specify the
coordinates left, top, right, and bottom. If you don’t include the coordinates,
OneClick captures the text from the entire window.

Any unspecified coordinates will use the window’s coordinates. For example, if you
don’t specify right and bottom, OneClick assumes the window’s right and bottom
edges.

Examples // Display the text from the bottom-right corner (status bar area) of a FrameMaker window.
Variable theStatus
GetWindowText theStatus, 1, 1, Window.Height - 34// capture 34 pixels from window bottom
Message theStatus

// This script "watches" for prompts in a communications window.
// It waits for the string "login:" to appear, then types the login name.
// It then waits for the string "Password:" to appear, then types the password.

Variable telnetScreen

// Put all the text in the frontmost window into a variable named telnetScreen.
GetWindowText telnetScreen

// Repeatedly get the window's text, once per second, until the
// string "login:" is found somewhere in the text.
While NOT (Find "login:", telnetScreen)

Pause 10
GetWindowText telnetScreen

End While

// When the previous loop exits, it means the string "login:" was found
// in the window, so type our login name.
Type "annie_douglas<return>"

// Now do the same for the Password prompt.
GetWindowText telnetScreen
While NOT (Find "Password:", telnetScreen)

Pause 10
GetWindowText telnetScreen

End While
Type "golddigger<return>"
■ 227

CHAPTER 8 ■ EASYSCRIPT REFERENCE

If, Else, Else If, End If commands

22
If, Else, Else If, End If commands
Syntax If condition

statements
[Else If condition

statements]
[Else

statements]
End If

Description Causes the script to execute different statements depending on the value of
condition, which is usually an expression that evaluates to true (non-zero) or false
(zero). A numeric expression is true if it does not equal zero; a string expression is
true if it does not equal the null string (“”).

If condition is true (is not equal to zero or the null string), the script continues
following the If command. If it is false, all statements up to the next Else, Else If or
End If are skipped. If there is an Else statement and the If condition is false, only those
commands after the Else will be executed until the next End If.

If statements can be nested (there can be an If statement inside of an If statement).

Else If is a shortcut for multiple Else and If statements.

Examples If LineVar < 100 // Only types LineVar if it is less than 100
Type LineVar

End If

// Shows if FlagVar is or is not equal to zero. Could also use: If FlagVar <> 0
If FlagVar

Type "Is not zero"
Else

Type "Is zero"
End If

// The following types something different depending on what was chosen from the menu
TheMenu = PopupMenu "Red<return>Green<return>Blue"
If TheMenu = "Red"

Type "Roses"
Else If TheMenu = "Green"

Type "Grass"
Else If TheMenu = "Blue"

Type "Ocean"
End If
8 ■

CHAPTER 8 ■ EASYSCRIPT REFERENCE

IgnoreClicks system variable
IgnoreClicks system variable
Description When set to True (1), OneClick causes the system to ignore all mouse activity except

clicks on OneClick palettes. Use IgnoreClicks when your script musn’t be interrupted
by the user clicking around in applications while your script runs. Keyboard input is
still allowed.

IgnoreClicks is automatically reset to 0 when the script ends so there is no need to
reset it yourself at the end of a script.

Example Button.Text = "Processing…"
Button.Color = 36 // red
Button.Update
// Prevent the user from clicking in applications during lengthy processing.
IgnoreClicks = 1
// Do some lengthy processing here that shouldn't be interrupted
// -- generate web pages, batch operations in Photoshop, copy files, etc.
Call "Do Much Stuff", "Work Palette"
// When done, restore mouse activity
IgnoreClicks = 0
// Continue processing, allowing mouse activity
Button.Color = 0
Button.Text = "All done!"

Implemented function
Syntax Implemented keyword

Description Returns True (1) if the specified keyword is implemented in the current version of
OneClick. Use Implemented to determine if a certain OneClick extension is loaded, or
if a keyword is available in the active version that wasn’t available in an earlier version.
If a keyword is not implemented, it appears as “???” in the Script Editor.

Examples // Check to see if the QuoteText extension (external command) is loaded
If Implemented QuoteText

Clipboard = QuoteText Clipboard, 60, "> "
Else

Message "The QuoteText extension isn’t loaded."
End If

// See if we can use the ListFind function (not available in OneClick 1.0 and earlier)
If Implemented ListFind
■ 229

CHAPTER 8 ■ EASYSCRIPT REFERENCE

IsKeyDown system variable

23
theItem = ListFind theList, searchText
Else

Message "ListFind is not supported, please upgrade your version of OneClick!"
End If

See Also Version system variable (page 301)

IsKeyDown system variable
Description Returns True (non-zero) when any key on the keyboard is pressed or held down. “Any

key” includes all keys on the keyboard except the Power On key. As soon as the
pressed key is released, IsKeyDown returns False (0). You cannot check to see which
key was pressed.

You can use IsKeyDown to check to see if a key was pressed, then take some other
action. Or, use the Wait command to wait for a keystroke, then continue. You may
need to hold down a key slightly longer than you would for a simple keystroke to give
IsKeyDown time to recognize that a key is down.

Note When Caps Lock is on, the Caps Lock key is considered pressed even if it’s not
physically held down.

Examples // Wait for a keypress, then start quacking while the key is down.
// Stop quacking when the key is released. Show the status on the button.
Button.Text = "Waiting..."
Wait IsKeyDown
While IsKeyDown

Sound "Quack"
End While
Button.Text = "Done"

See Also IsMouseDown system variable (page 230)

IsMouseDown system variable
Description Returns True (non-zero) if the mouse button is down (pressed), otherwise returns

False.

You can use IsMouseDown to check to see if the mouse was clicked, then take some
other action. Or, use the Wait command to wait for a mouse click, then continue. You
0 ■

CHAPTER 8 ■ EASYSCRIPT REFERENCE

KeyPress command
may need to hold down the mouse button slightly longer than you would for a normal
mouse click to give IsMouseDown time to recognize that the mouse button is down.

Examples // Wait for the mouse button to be pressed, then start quacking while the button is down.
// Stop quacking when the button is released. Show the status on the button.
Button.Text = "Waiting..."
Wait IsMouseDown
While IsMouseDown

Sound "Quack"
End While
Button.Text = "Done"

See Also IsKeyDown system variable (page 230)

KeyPress command
Syntax KeyPress [Command] [Option] [Control] [Shift] character(s)

Description Types the specified character as if you had typed it from the keyboard.

To simulate holding down a modifier key, include one or more of the following
keywords in any order: Command, Option, Control, or Shift.

Keystrokes typed with KeyPress may be intercepted by any Mac OS extension that
allows keyboard shortcuts, such as the Control Strip, OneClick buttons, and other
macro utilities. For example, if you have a OneClick button set to use the shortcut
Command-Y, using KeyPress to type Command-Y will activate that OneClick button.

The difference between the Type command and KeyPress is that Type sends typed
keystrokes only to the active application, bypassing any OS-level extensions that may
be intercepting keystrokes. Type can type any amount of text to the active application,
but KeyPress is limited to the size of the Mac OS event queue, which is 12 in Mac OS 7,
24 in Mac OS 8, and 48 in Mac OS 9.

Note When typing in menu key equivalents from a script, it’s best to use lowercase letters
instead of uppercase. Some third-party extensions that modify menu equivalent
behavior do not expect an uppercase letter, because you don’t usually hold down the
Shift key when typing a menu equivalent.

Examples // presses Command-B, then Command-I
KeyPress Command "bi"
■ 231

CHAPTER 8 ■ EASYSCRIPT REFERENCE

LaunchURL command

23
// presses Command-Control-F12
KeyPress Command Control "<f12>"

See Also Type command (page 298)

LaunchURL command
Syntax LaunchURL theURL

Description Launches a URL using a helper application set in Internet Config.

Examples // Lauches your web browser and goes to www.westcodesoft.com
LaunchURL "http://www.westcodesoft.com/"

// Opens a new email message addressed to support@westcodesoft.com
LaunchURL "mailto:support@westcodesoft.com"

Author Info LaunchURL Extension
Copyright © 1998 Dan Crevier. All rights reserved.

Length function
Syntax Length text

Description Returns the number of characters in text.

Examples // Types: 6
Type Length "Banana"

// Types: 0
Type Length ""

ListCount function
Syntax ListCount list

Description Returns the number of items in the list.

Examples // Types: 5
Type ListCount "Red<return>Orange<return>Yellow<return>Green<return>Blue"

// Types: 4 (The empty string after the last <return> counts as one item)
2 ■

CHAPTER 8 ■ EASYSCRIPT REFERENCE

ListDelete function
Type ListCount "Red<return>Orange<return>Yellow<return>"

// Types the number of fonts in the Font menu
Type ListCount Menu("Font").List

See Also OldListCount function (page 251)

ListDelete function
Syntax ListDelete list, start [, end]

Description Deletes one or more items from a list and returns the new list. Start indicates the first
item to delete and end indicates the last item to delete. If end is not specified,
ListDelete removes all items from start to the end of the list.

Examples Variable oldList newList foundItem
oldList = "Red,Yellow,Orange,Green,Blue,Purple"
ListDelimiter = ","

// Delete the first item
newList = ListDelete oldList, 1, 1
Type newList, Return

// Delete the second, third, and fourth item
newList = ListDelete oldList, 2, 4
Type newList, Return

// Delete all items from the third item to the end of the list
newList = ListDelete oldList, 3
Type newList, Return

// Delete the last item
newList = ListDelete oldList, (ListCount oldList), (ListCount oldList)
Type newList, Return

// Delete the item "Orange"
foundItem = ListFind oldList, "Orange"
newList = ListDelete oldList, foundItem, foundItem
Type newList, Return

See Also ListCount function (page 232), ListFind function (page 235)
■ 233

CHAPTER 8 ■ EASYSCRIPT REFERENCE

ListDelimiter system variable

23
ListDelimiter system variable
Description Returns the character used to separate items in a list, or sets the character that

separates list items. The default ListDelimiter is the carriage return character, shown
in a script as <return>.

Set ListDelimiter to a different character to work with regular text strings as lists. For
example, you could change ListDelimiter to a space to treat a sentence as a list of
words. Or change ListDelimiter to a colon (:) to treat a file’s path as a list containing
the volume, folder(s), and file name.

Note When you change ListDelimiter, all functions that work with lists (and object
properties that return lists) use the new ListDelimiter value. If you change
ListDelimiter to a colon or another character, remember to change it back to the
default character (<return>) before using a list delimited by carriage returns. The
ListDelimiter value is reset to <return> when the script ends or is cancelled with
Command-period, so you don’t need to explicitly change it back at the end of the
script.

Examples // Show a list box containing a list of all words in the sentence.
Variable X, theSentence
theSentence = "Monday is my favorite day of the week."
// Change ListDelimiter to a space (a space character separates words in the sentence).
ListDelimiter = " "
X = AskList theSentence

// Show a message box containing the volume name and file name of the chosen file.
// The first item in the path is the volume name, the last item is the file name
// A colon separates items in a path.
Variable thePath, volumeName, fileName
thePath = AskFile
ListDelimiter = ":"
volumeName = ListItems thePath, 1
fileName = ListItems thePath, –1
Message "You chose something named " & fileName & " on the disk named " & volumeName

// Type a list of sounds, separated by commas instead of carriage returns
ListDelimiter = ","
Type GetResources "snd "

See Also Manipulating lists (page 120)
4 ■

CHAPTER 8 ■ EASYSCRIPT REFERENCE

ListFind function
ListFind function
Syntax ListFind list, item

Description Searches a list for item and returns the position of the first occurrence of item, or 0
(zero) if the item isn’t found. Searches are not case-sensitive.

ListFind matches whole items only, not partial strings within an item. To mach partial
strings, use the ‘?’ wildcard character to match a single character or the ‘*’ wildcard to
match zero or more characters.

Examples Variable theList foundItem
theList = "Red,Yellow,Orange,Green,Blue,Purple"
ListDelimiter = ","

// Types: 3 (orange is item 3 in the list)
foundItem = ListFind theList, "ORANGE"
Type foundItem, Return

// Types: 0 (item not found in the list, string “urp” does not match item “Purple”)
foundItem = ListFind theList, "urp"
Type foundItem, Return

// Types: 6 (using wildcard characters, string “*urp*” matches item “Purple”)
foundItem = ListFind theList, "*urp*"
Type foundItem, Return

See Also

ListInsert function
Syntax ListInsert list, text, position

Description Inserts text as a new item into a list before the specified item position and returns the
new list.

Examples Variable oldList newList
oldList = "Green,Blue,Purple"
ListDelimiter = ","

// Insert “Cyan” before item 2 (“Blue”)
// Types: Green,Cyan,Blue,Purple
newList = ListInsert oldList, "Cyan", 2
■ 235

CHAPTER 8 ■ EASYSCRIPT REFERENCE

ListItems function

23
Type newList, Return

// Insert three new items at the beginning of the list
// Types: Red,Yellow,Orange,Green,Blue,Purple
newList = ListInsert oldList, "Red,Yellow,Orange", 1
Type newList, Return

// Insert a new item before the last item
// Types: Green,Blue,Blueberry,Purple
newList = ListInsert oldList, "Blueberry", (ListCount oldList)
Type newList, Return

// ListInsert doesn’t insert items after the last item. Instead, use the & operator
// to add new items at the end of a list.
// Types: Green,Blue,Purple,Indigo
newList = oldList & ListDelimiter & "Indigo"
Type newList, Return

See Also

ListItems function
Syntax ListItems list, start [, end]

Description Returns a portion of the specified list. Start indicates the list item to start from and
end indicates the last list item. If end is not supplied, ListItems returns the single list
item at start. If Start and end are negative numbers, then ListItems returns items from
the end of the list instead of the beginning.

Examples // Types: Green, Blue, Yellow (all on separate lines)
Type ListItems "Red<return>Green<return>Blue<return>Yellow<return>Brown", 2, 4

// Types: Blue, Yellow, Brown (all on separate lines)
Type ListItems "Red<return>Green<return>Blue<return>Yellow<return>Brown", –3, –1

// Assuming the SystemFolder path is "Mac HD:System Folder", types "Mac HD"
ListDelimiter = ":"
Type ListItems SystemFolder, 1

See Also ListDelimiter system variable (page 234)
6 ■

CHAPTER 8 ■ EASYSCRIPT REFERENCE

ListSort function
ListSort function
Syntax ListSort list

Description Sorts all list items in alphabetical order.

Examples // Types: Blue, Green, Red (all on separate lines)
Type ListSort "Red<return>Green<return>Blue"

// Lets you choose a window from a list of all windows sorted alphabetically,
// then makes the chosen window the active (front) window.
Variable theChoice
theChoice = PopupMenu ListSort Window.List
Window(theChoice).Front

ListSum function
Syntax ListSum list

Description Returns the sum of all the numbers in the list.

Examples // Types:30
Type ListSum "10<return>35<return>–15"

// Sums all the currently selected numbers and types the
// sum on the line after the last number
SelectMenu "Edit", "Copy"
// Move to the next line
Type "<rightarrow><return>"
// Type the sum of all the numbers on the Clipboard
Type ListSum Clipboard

LoadExtensions command
Syntax LoadExtensions file

Description Loads or reloads OneClick extensions (external commands, functions, or system
variables) from the specified file. Use LoadExtensions to install or update a OneClick
extension without having to restart.

Example // Load the QuoteText extension from a file on the desktop
LoadExtensions "Mac HD:Desktop Folder:QuoteText Extension"
■ 237

CHAPTER 8 ■ EASYSCRIPT REFERENCE

Lower function

23
// Reload all extensions in OneClick’s Extensions folder
Variable theFolder theFile fileList X
theFolder = (FindFolder "oclk") & "Extensions:" // get path to OneClick Extensions folder
fileList = File(theFolder).List // get list of extension files in folder
For X = 1 To ListCount fileList

theFile = theFolder & ListItems fileList, X
LoadExtensions theFile

End For

Lower function
Syntax Lower text

Description Returns text with all letters changed to lowercase.

Examples // Types "this is it."
Type Lower "This is IT."

See Also Upper function (page 299), Proper function (page 275)

MakeNumber function
Syntax MakeNumber text

Description Returns text as a numeric value. This is the opposite of MakeText.

OneClick normally converts a string value to a number when the value is passed to a
command that expects a numeric parameter. However, some commands (such as
SelectMenu) can accept both string and numeric parameters; the value is interpreted
differently depending on whether it is a string or a number. In cases like these, you’ll
need to use MakeNumber to force the command to interpret the string value as a
number.

When converting text to a number, MakeNumber observes the following rules:

■ any leading spaces are ignored

■ the number can have a leading ‘–’ or ‘+’

■ there cannot be a space after the ‘–’ or ‘+’ or between the digits

■ conversion stops when any non-numeric characters are encountered
8 ■

CHAPTER 8 ■ EASYSCRIPT REFERENCE

MakeText function
Following are some examples of how MakeNumber converts text to numbers.

Examples Variable theMenu
theMenu = AskText "Type a menu number:"

// AskText returns a string value, so we’ll convert it to a number before
// passing it to the Menu object. For example, if we type 3 in the AskText
// dialog box and pass that value to the Menu object, Menu will think
// we’re referring to the menu named "3" instead of the 3rd menu in the menu bar.
theMenu = MakeNumber theMenu

// Types a list of all the menu items for the specified menu
Type Menu(theMenu).List

See Also MakeText function (page 239)

MakeText function
Syntax MakeText number

Description Returns number as a string value. This is the opposite of MakeNumber.

OneClick normally converts a numeric value to a string when the value is passed to a
command that expects a string parameter. However, some commands (such as
SelectMenu) can accept both string and numeric parameters; the value is interpreted
differently depending on whether it is a string or a number. In cases like these, you’ll
need to use MakeText to force the command to interpret the numeric value as a string.

Examples Variable theWindow
theWindow = 3

// Selects the 3rd item from the Window menu
SelectMenu "Window", theWindow

// Selects an item named "3" from the Window menu
SelectMenu "Window", MakeText theWindow

See Also MakeNumber function (page 238)

Text Number Text Number Text Number

“12” 12 “Twelve” 0 “12–42” 12

“12 point” 12 “–42” –42 “1 2 3” 1
■ 239

CHAPTER 8 ■ EASYSCRIPT REFERENCE

Menu object

24
Menu object
Description A Menu object is any menu or submenu in the menu bar. You can use a Menu object

to determine if a menu item is checked or enabled, or to get a list of all the menu
items in a specified menu. The .Checked and .Enabled properties work the same way
as the DialogButton object’s .Checked and .Enabled properties.

The specifier for a Menu object is a menu or menu item name. You can also specify a
menu by index number: 1 is the first menu in the menu bar (usually the Apple menu),
2 is the second menu (usually File), and so on. Use a negative number to specify a
menu starting from the right side of the menu bar: –1 is the Application menu, –2 is
the Help menu, and so on.

You can also specify menu items by index number. Like menus in the menu bar, the
first item in the menu is 1, the second is 2, and the last is –1. A divider line in the
menu also counts as a menu item.

Menus that have no name (such as icon menus) are specified by menu ID either as a
number or as a string. The format for strings is "[menu_ID]". Menu.List returns menu
ID numbers as strings for these kinds of menus. For example, the MegaPhone menu
(which has menu ID of –16400) would be "[–16400]" in the menu list. You could use
either of the following to get the list of items in the MegaPhone menu, assuming
MegaPhone is installed on your system.

Menu(–16400).List
Menu("[–16400]").List

To specify a menu item in a menu, specify both the menu and menu item using this
syntax:

Menu(menu, menu-item).Property

For example, to see if the Copy command in the Edit menu is enabled, you could use
either of these statements:

If Menu("Edit", "Copy").Enabled // check to see if Copy in the Edit menu is enabled
If Menu(3, 4).Enabled // check to see if the 4th command in the 3rd menu is enabled

You can specify menu items in hierarchical menus using a similar syntax. Just include
any submenu names in the path to the menu or menu item:

Menu(menu, submenu, menu-item)
0 ■

CHAPTER 8 ■ EASYSCRIPT REFERENCE

Menu object
For example, you could use the following to see if the Bold menu item is checked in
the Style submenu of the Format menu:

If Menu("Format", "Style", "Bold").Checked

You can use wildcard characters to match menu or menu item names. ‘?’ matches a
single character and ‘*’ matches zero or more characters.

All Menu properties are read-only.

.Count Returns the number of menus in the menu bar or the number of items in the specified
menu.

// Display the number of menus in the menu bar
Message Menu.Count

// Display the number of items in the File menu
Message Menu("File").Count

.Checked Returns True (1) if the specified menu item is checked, or False (0) if it’s unchecked.

If you specify a menu instead of a menu item, the Checked property returns a list of all
checked items in the menu.

// Switch between Body Pages and Master Pages. The current choice appears checked
// in the View menu; only one choice appears checked at a time.
Menu.Update // force the application to update the checkmarks in its menus
If Menu("View", "Body Pages").Checked

SelectMenu "View", "Master Pages"
Else

SelectMenu "View", "Body Pages"
End If

// Display an AskList dialog box listing all View menu items with checked menu items highlighted
Variable theResponse
theResponse = AskList Menu("View").List, "Pick an item", Menu("View").Checked

.Enabled Returns True (1) if the specified menu or menu item is enabled (not dimmed), or
False (0) if it’s dimmed.

// Check the Stop Loading menu item every 0.5 seconds until it’s no longer enabled
// When it becomes disabled, beep twice to indicate Netscape’s page load is complete
On MouseDown

Schedule 5
End MouseDown
■ 241

CHAPTER 8 ■ EASYSCRIPT REFERENCE

Menu object

24
On Scheduled
Menu("Go").Update
If NOT Menu("Go", "Stop Loading").Enabled

Beep
Beep
Schedule 0

End If
End Scheduled

.Exists Returns True (1) if the specified menu or menu item exists, otherwise False (0).

// Check to see if the Format menu exists before opening the Paragraph Designer.
// (The Format menu exists only if a document is open.) If the menu doesn’t exist, then
// display a message box and exit.
If Menu("Format").Exists

SelectMenu "Format", "Paragraphs", "Designer…"
Else

Message "Can’t open the Paragraph Designer. Perhaps no document is open."
Exit

End If

.Height Returns the height of the menu bar in pixels. Using Menu.Height instead of the
default value 20 is useful if the script may be run on systems that use a nonstandard
menu bar height. This property is read-only and no menu specifier is necessary.

// Position the palette just below the menu bar
Palette.Top = Menu.Height + 1

.Index Returns the corresponding index number for the menu or menu item when the menu
or item is specified by name (1 for the first menu, 2 for the second, and so on). For the
Menu object, this property is read-only.

.List Returns an unsorted list of menu items in the specified menu or submenu. Use
Menu.List without a specifier to get a list of the menus in the menu bar.

// Type a list of all the menus in the menu bar
Type Menu.List

// Type a list of all the commands in the File menu
Type Menu("File").List

// Type a list of all the commands in the Style submenu of the Format menu
Type Menu("Format", "Style").List
2 ■

CHAPTER 8 ■ EASYSCRIPT REFERENCE

Menu object
// See if the Palatino font is available in the Font menu
If NOT Find "Palatino", Menu("Font").List

Message "You don’t have Palatino installed."
Exit

End If

.Name Returns the name of the specified menu or menu item. Use .Name when you want to
get the name of an icon menu that doesn’t have a name, such as the Apple menu or
Help menu. .Name returns a pseudo name if it knows what the menu is. If the
specified menu already has a name, then .Name just returns the menu’s name.

If .Name is unable to determine a menu’s name, then .Name may return garbage or
nothing at all, depending on how the application defines its menu names for icon
menus.

// Type the name of the Application menu
Type Menu(–1).Name

.Update Forces the active application to update the status of checked, unchecked, enabled,
and disabled items in its menus.

Some applications don’t update their menus (enable, disable, check or uncheck menu
items) until you click in the menu bar. Because OneClick accesses and selects menu
items without clicking the menu bar, the SelectMenu command (and the .Checked
and .Enabled properties of menu items) may not work correctly when the script tries
to access a menu item that appears disabled. To get around this problem, use
Menu.Update before a SelectMenu statement and before statements that access a
menu item’s .Checked or .Enabled property.

// Check the status of the Bold item in the Style menu, then set the button’s icon appropriately
// Make sure the Style menu shows the correct status of the Bold item first
Menu.Update
If Menu("Style", "Bold").Checked

For this menu: .Name returns:

Apple menu [Apple]

OneClick menu [OneClick]

Help (or Guide) menu [Balloon]

Application menu [Process]
■ 243

CHAPTER 8 ■ EASYSCRIPT REFERENCE

MenuNumber function

24
Button.Icon = 1
Else

Button.Icon = 2
End If

MenuNumber function
Syntax MenuNumber

Description Returns the number of the item chosen from a PopupMenu function. (PopupMenu
returns the text of the chosen item; MenuNumber returns the item’s position in the
menu list.) MenuNumber returns 0 (zero) if you release the mouse button without
choosing an item from the pop-up menu.

Example Variable theChoice
theChoice = PopupMenu "Apple<return>Lemon<return>Strawberry"
If MenuNumber = 1

Message "You picked the first item"
End If

See Also PopupMenu function (page 265)

Message command
Syntax Message text

Description Displays text in a dialog box with an OK button. Use Message when you want to
display a message on the screen while a script runs. The script stops and waits until
you click the OK button, then closes the dialog box and resumes running.

Text is limited to 250 characters.

Examples Message "Happy mother’s day"
Message (Substring "Macintosh", 1, 3)
4 ■

CHAPTER 8 ■ EASYSCRIPT REFERENCE

MountVolume command
Sample Message dialog box

See Also Notify command (page 250), AskButton function (page 152)

MountVolume command
Syntax MountVolume zone, server, volume [, username] [, server-password] [, volume-password]

Description Mounts an AppleShare server volume using AppleTalk without displaying the
“Connect to the file server” dialog box or server greeting message.

Zone, server, and volume names are all required. If you omit both username and
server-password, MountVolume attempts to mount the volume as a guest.

MountVolume looks for the server in the local zone if zone is either empty or “*”.

Volume-password is required only if the volume has its own separate password. Most
AppleShare volumes do not use a volume password.

Note If you are already logged in to a server and attempt to mount another volume
from the same server, the new volume is mounted with your previous user name and
password. (The Chooser works the same way.) To mount the volume with a new
name and password, unmount all volumes from that server first.
■ 245

CHAPTER 8 ■ EASYSCRIPT REFERENCE

MountVolume command

24
If MountVolume cannot mount a volume, the Error system variable contains a number
indicating why the volume couldn’t be mounted. Common errors include the
following.

Examples // Mounts the volume “CD-R HD” on “Mastering Server”
// in the zone “4th Floor”, logging in as user “Joe” with password “secret”
MountVolume "4th Floor", "Mastering Server", "CD-R HD", "Joe", "secret"

// Mounts the volume “Backup HD” on “CondoNet Backup Server”
// in the local zone, logging in as Guest. Checks to make sure the volume was mounted,
// then opens the volume in Finder if successful, otherwise displays the error number.
Variable mvError
MountVolume "*", "CondoNet Backup Server", "Backup HD"
mvError = Error
If mvError // check to see if the mount failed (0 = success)

Message "MountVolume error: " & mvError
Else

Open "Backup HD:"
End If

Author Info MountVolume, part of MountVolume Extension
Copyright © 1999 Jeff Jungblut. All rights reserved.

See Also MountVolumeIP command (page 247), .Unmount (page 303)

Error Meaning

3 Parameter error in script (zone, server, or volume not specified)

–28 AppleTalk is inactive

–35 Volume not found on server

–108 Out of memory

–5000 Access denied (no permission to mount volume)

–5016 Server not found or not responding

–5023 Authentication failed (incorrect user name or password)

–5042 Password expired

–5061 Maximum volumes mounted

–5062 Volume already mounted
6 ■

CHAPTER 8 ■ EASYSCRIPT REFERENCE

MountVolumeIP command
MountVolumeIP command
Syntax MountVolumeIP afp-url [, show-login] [, show-greeting]

Description Mounts an AppleShare server volume using TCP/IP.

Afp-url is a uniform resource locator that contains the server IP address, volume to
mount, and an optional user name and password. AFP URLs use the following format:

afp://username:password@server-address/volumename/

To mount a volume as a guest, use this format:

afp://server-address/volumename/

If show-login is True (nonzero), MountVolumeIP prompts you for your user name and
password in the AppleShare login dialog box instead of using the name and password
in the URL. If show-login is False (0) or omitted, no login dialog box appears. If you
do not supply a user name and password in the URL and don’t set the show-login
parameter to 1, MountVolumeIP attempts to mount the volume as a guest. The default
value for show-login is False (0).

If show-greeting is True (nonzero), the server greeting message (if any) appears when
you log in. The default value for show-greeting is False (0).

MountVolumeIP ignores any extra path information following the volume name in the
URL. For example, MountVolumeIP "afp://169.254.44.176/My Disk/My Folder/My
Doc/" mounts the volume My Disk, but does not open My Doc in My Folder.

Note If you are already logged in to a server and attempt to mount another volume
from the same server, the new volume is mounted with your previous user name and
password. (The Chooser works the same way.) To mount the volume with a new
name and password, unmount all volumes from that server first.
■ 247

CHAPTER 8 ■ EASYSCRIPT REFERENCE

MountVolumeIP command

24
If MountVolumeIP cannot mount a volume, the Error system variable contains a
number indicating why the volume couldn’t be mounted. Common errors include the
following.

Examples // Mounts the volume “CD-R HD” on “mastering.westcodesoft.com”,
// logging in as user “Joe” with password “secret”
MountVolumeIP "afp://Joe:secret@mastering.westcodesoft.com/CD-R HD/"

// Mounts the volume “Backup HD” on “169.254.44.176”, logging in as Guest.
// Checks to make sure the volume was mounted, then opens the volume
// in Finder if successful, otherwise displays the error number.
Variable mvError
MountVolumeIP "afp://169.254.44.176/Backup HD"
mvError = Error
If mvError // check to see if the mount failed (0 = success)

Message "MountVolumeIP error: " & mvError
Else

Open "Backup HD:"
End If

Author Info MountVolumeIP, part of MountVolume Extension
Copyright © 1999 Leonard Rosenthol and Jeff Jungblut. All rights reserved.

Error Meaning

3 Parameter error in script (no URL specified)

–28 AppleTalk is inactive

–35 Volume not found on server

–108 Out of memory

–128 User cancelled the login dialog box

–5000 Access denied (no permission to mount volume)

–5016 Server not found or not responding

–5019 AFP parameter error (usually means login is disabled)

–5023 Authentication failed (incorrect user name or password)

–5042 Password expired

–5061 Maximum volumes mounted

–5062 Volume already mounted
8 ■

CHAPTER 8 ■ EASYSCRIPT REFERENCE

MouseDown handler
See Also MountVolume command (page 245), .Unmount (page 303)

MouseDown handler
Description A script’s MouseDown handler executes when you click the mouse on a button, but

before you release the mouse. The handler executes as soon as you click the button.

A script cannot contain both MouseUp and MouseDown handlers. If a script does
contain both handlers, only the MouseDown handler runs when you click the button.

Examples // Play the Quack sound when you click the button.
// The sound starts playing as soon as you click.
On MouseDown

Sound "Quack"
End MouseDown

See Also MouseUp handler (page 249), IsMouseDown system variable (page 230)

MouseUp handler
Description A script’s MouseUp handler executes when you click and release the mouse on a

button. The script doesn’t start executing until after you release the mouse button.
(This lets you cancel clicking the button by moving the pointer off of the button
before releasing the mouse button.)

The MouseUp handler is the default handler for a script. If the script contains
PopupMenu, PopupPalette, or PopupFiles, then MouseDown is the default handler
instead.

A script cannot contain both MouseUp and MouseDown handlers. If a script does
contain both handlers, only the MouseDown handler runs when you click the button.

Examples // Play the Quack sound when you click and release the mouse button.
On MouseUp

Sound "Quack"
End MouseUp

See Also MouseDown handler (page 249), IsMouseDown system variable (page 230)
■ 249

CHAPTER 8 ■ EASYSCRIPT REFERENCE

Notify command

25
Notify command
Syntax Notify text

Description Displays text in a dialog box or a floating window. Under Mac OS 8.6 and earlier, the
text appears in a modal dialog box with an OK button, just like the Message
command. Under Mac OS 9, the text appears in a nonmodal floating window.

When you use Notify to display text, the script continues running while the message is
still on the screen. When you use Message to display text, the script stops running
until you click OK.

Text is limited to 250 characters.

Examples Notify "Hello, world!"

Variable msg
msg = "Your time-consuming process has finished."
msg = msg & Return & Return & (DateTime.DateString 34)
msg = msg & " " & (DateTime.TimeString 3)
Notify msg

Author Info Notify Extension
Copyright © 1999 Jeff Jungblut. All rights reserved.

See Also Message command (page 244), AskButton function (page 152)

OldDate function
Syntax OldDate [format]

Description Returns the current date formatted as a string.

This function is obsolete and is provided only for backward compatibility with
OneClick 1.0 scripts. Use DateTime.DateString instead.

See Also DateTime object (page 181)
0 ■

CHAPTER 8 ■ EASYSCRIPT REFERENCE

OldDateString function
OldDateString function
Syntax OldDateString secondsSince1904 [, format]

Description Returns the date as a string, given the number of seconds since 1904.

This function is obsolete and is provided only for backward compatibility with
OneClick 2.0 Preview scripts. Use DateTime.DateString instead.

See Also DateTime object (page 181)

OldListCount function
Syntax OldListCount list

Description Returns the number of items in the list. If the list ends with a delimiter, the last item
(the empty string) is not counted.

Note This function is obsolete and is provided only for backward compatibility with
OneClick 1.0 scripts. Use ListCount instead.

Examples // Types: 5
Type OldListCount "Red<return>Orange<return>Yellow<return>Green<return>Blue"

// Types: 5 (The empty string after the last <return> is not counted)
Type OldListCount "Red<return>Orange<return>Yellow<return>Green<return>Blue<return>"

// Types: 5
Type ListCount "Red<return>Orange<return>Yellow<return>Green<return>Blue"

// Types: 6 (The empty string after the last <return> is counted)
Type ListCount "Red<return>Orange<return>Yellow<return>Green<return>Blue<return>"

See Also ListCount function (page 232)

OldListItems function
Syntax ListItems list, start [, end]

Description Returns a portion of the specified list. Works similar to ListItems, except that if the list
ends with the list delimiter, OldListItems ignores the delimiter.
■ 251

CHAPTER 8 ■ EASYSCRIPT REFERENCE

OldTime function

25
Note This function is obsolete and is provided only for backward compatibility with
OneClick 1.0 scripts. Use ListItems instead. To get the name of a file or folder from a
path which might end with a colon, use the File.Name property instead (see
page 204).

Example Variable thePath
thePath = "Mac HD:System Folder:"
ListDelimiter = ":"
// Displays an empty message box -- the last item in the list is the empty string
Message ListItems thePath, - 1
// Displays “System Folder”, ignoring the list delimiter at the end of the list
Message OldListItems thePath, - 1

See Also ListItems function (page 236), ListDelimiter system variable (page 234)

OldTime function
Syntax OldTime [format]

Description Returns the current time formatted as a string.

This function is obsolete and is provided only for backward compatibility with
OneClick 1.0 scripts. Use DateTime.TimeString instead.

See Also DateTime object (page 181)

OldTimeString function
Syntax OldTimeString secondsSince1904 [, format]

Description Returns the time as a string, given the number of seconds since 1904.

This function is obsolete and is provided only for backward compatibility with
OneClick 2.0 Preview scripts. Use DateTime.TimeString instead.

See Also DateTime object (page 181)
2 ■

CHAPTER 8 ■ EASYSCRIPT REFERENCE

OnlineHelp handler
OnlineHelp handler
Description The OnlineHelp handler is a handler generated automatically by the Online Help

Editor palette and inserted into an existing script on one of your own palettes. If you
want to add online help to a palette, use the Online Help Editor to create the help
screens and insert the OnlineHelp handler into one of your palette’s scripts, then
have one of your scripts call the OnlineHelp handler to load and display your help
screens in the Online Help palette.

The Online Help and Online Help Editor palettes are included with OneClick. For
more information on developing online help with the Online Help Editor, import the
Online Help Editor palette (in the Developer Goodies folder) and click the palette’s
Help button.

Open command
Syntax Open path-list [, path-to-application]

Description Opens the specified application, document, control panel, desk accessory, or folder.
(The Open command can open anything the Finder can open.) Path-list is either a full
path or a list of full paths.

If you include the optional path-to-application parameter, OneClick opens the file
using the application at the specified path instead of the application used to create the
file. (It’s the same as opening the document by dropping it onto the application’s
icon.)

Note If there isn’t enough memory to open an item, then the item does not open and the
Error system variable is set to 1 (out of memory error).

Examples // Open a single document
Open "Mac HD:Quicken Deluxe 98:My Accounts"

// Open three documents in Mac HD:Administrative Stuff:
Variable theDir
theDir = "Mac HD:Administrative Stuff:" // prepend theDir to each file name
Open theDir & "Status Report<return>" & theDir & "Month-End<return>" & theDir & "Budget"

// Open the File Sharing Monitor control panel
Open (FindFolder "ctrl") & "File Sharing Monitor"
■ 253

CHAPTER 8 ■ EASYSCRIPT REFERENCE

OpenFileList function

25
// Open Picture 1 using Adobe Photoshop.
// Display a message if there’s not enough memory to open Photoshop.
Open "Mac HD:Picture 1", "Mac HD:Applications:Photoshop:Adobe® Photoshop® 5.0.2"
If Error = 1

Message "Not enough memory to open Photoshop."
End If

// Open the item(s) dropped on the button in BBEdit (creator code for BBEdit is "R*ch")
On DragAndDrop

Open GetDragAndDrop, FindApp "R*ch" // FindApp "R*ch" returns full path to BBEdit
End DragAndDrop

See Also Directory system variable (page 191)

OpenFileList function
Syntax OpenFileList [volume [, include-font-files]]

Description Returns a list containing the full paths of all open files. This is useful for determining
which files are still open if the Mac won’t unmount a volume because it contains files
that are in use, for example.

Without any parameters, OpenFileList returns a list of all open files on all volumes. If
you specify a volume name in the first parameter, OpenFileList returns a list of open
files on that volume only. If you include 1 (True) in the second parameter, the paths
to open font files are also included in the list of files returned.

A file is included in the list twice if both its resource fork and data fork are open.

Examples // Display a list box showing all open files (including font files) on volume Mac HD
Variable X
X = AskList (OpenFileList "Mac HD", 1)

OpenResFile function
Syntax OpenResFile file

Description Opens a file’s resource fork into the current resource chain.
4 ■

CHAPTER 8 ■ EASYSCRIPT REFERENCE

OptionKey system variable
Note This is a technical Mac OS function and should be used at your own risk.

Examples Variable refNum
// Open the resource fork of a file containing sound resources
// and put the file’s reference number in refNum.
refNum = OpenResFile "Mac HD:YoYoLand™:Sound Library"
// Play a sound contained in the resource file.
Sound "Mystery"
// Close the file referred to by refNum.
CloseResFile refNum

Author Info OpenResFile, part of Resource Extension
Copyright © 1998 Life OnLine Software (lr). All rights reserved.

OptionKey system variable
Description Returns True (1) if the Option key was held down when the button was clicked to run

the script. Cannot set this system variable.

Use CommandKey, ControlKey, OptionKey, and ShiftKey to create buttons that
perform different actions based on the modifier key (or keys) that are pressed when
you click the button.

Examples // Normal click quits the active application, Option-click quits all open applications
Variable listOfApps, appCount, theApp, X
If OptionKey

// Get a list of running applications and the number of apps in the list
listOfApps = Process.List
appCount = Process.Count
// Loop through all the active applications and quit all the apps not named Finder
For X = 1 To appCount

theApp = ListItems listOfApps, X
If Process(theApp).Name <> "Finder"

Process(theApp).Quit
End If

End For
Else

// Normal (not Option) click: if the active app is something other than Finder, then quit it
If Process.Name <> "Finder"

Process.Quit
End If

End If
■ 255

CHAPTER 8 ■ EASYSCRIPT REFERENCE

Palette object

25
See Also CommandKey system variable (page 177), ControlKey system variable (page 179),
ShiftKey system variable (page 292)

Palette object
Description A Palette object refers to any OneClick palette. You can use the Palette object to

manipulate or get information about any of the global and application-specific
palettes available in the active application.

The specifier for a Palette object is the name of the palette as it appears in the Palette
Editor and on the palette’s title bar.

You can also specify a palette by number, which is useful for looping through all the
available palettes and performing some operation on each palette. Palette(–1) refers
to the palette under the cursor, if any.

.Color Gets or sets the color of the palette’s background. Colors are numbered 1–256; see
the Button.Color property (page 159) for more information.

.Count Returns the total number of available palettes. The .Count property is a shortcut for
ListCount Palette.List.

.Delete Permanently removes the specified palette. If no palette is specified, the palette
containing the active script is deleted.

.Drag Causes the button to act like a title bar, letting you drag the palette around on the
screen when you drag the button. The .Drag message works only in a MouseDown
handler.

To create a palette with a drag button (such as the palette at left), create a button with
the following script. Then simply drag the button to move the palette.

On MouseDown
Palette.Drag

End MouseDown

Drag button
6 ■

CHAPTER 8 ■ EASYSCRIPT REFERENCE

Palette object
.Exists Returns True (1) if the specified palette exists, otherwise False (0). A palette exists if
it’s available in the OneClick menu; .Exists returns True whether or not the palette is
actually visible.

An application-specific palette “exists” only if its application is open and active
(meaning the palette appears in the OneClick menu).

// Display the Styles palette. If the palette can’t be found, display a message box.
If Palette("Styles").Exists

Palette("Styles").Visible = 1
Else

Message "The Styles palette can’t be found. Make sure its application is open and active."
End If

.Front The Front message brings the specified palette to the front so that it overlaps any
other palettes.

.Grow Causes the button to act like a size box (sometimes called a grow box), letting you
resize the palette when you click and drag the button. The .Grow message works only
in a MouseDown handler.

Resizing a palette with Palette.Grow does not automatically move the button
containing the Palette.Grow script. The script should check the new height and width
of the palette and move the button to the palette’s new lower-right corner.

It’s possible to create a very small palette by dragging the grow button past the
palette’s left or top edge, rendering the palette almost unusable. Therefore, it’s a
good idea to have the script check the height and width of the palette after the
Palette.Grow statement and change the palette’s height or width if the size is too
small.

To create a palette with a grow box, create a button in the lower-right corner of the
palette and put the following script in the button:

On MouseDown
Palette.Grow
// Reset the palette’s height or width if it’s too small (minimum size 30 x 20 pixels)
If Palette.Width < 30

Palette.Width = 30
End If
If Palette.Height < 20

Palette.Height = 20
■ 257

CHAPTER 8 ■ EASYSCRIPT REFERENCE

Palette object

25
End If
// Move this button to the new lower-right corner of the palette
Button.Location = (Palette.Width – Button.Width), (Palette.Height – Button.Height)

End MouseDown

.Height Gets or sets the palette’s height. Setting .Height to zero (0) adjusts the height so that
all buttons fit vertically within the palette. (This is similar to clicking Fit To Buttons in
the Palette Editor, except only the height changes, not the width.)

// Toggle the palette between 40 pixels tall and the "Fit To Buttons" height
If Palette.Height = 40

Palette.Height = 0
Else

Palette.Height = 40
End If

.Index Returns the corresponding index number for the palette when the palette is specified
by name (1 for the first palette, 2 for the second, and so on). For the Palette object,
this property is read-only.

.InMenu Enables or disables the display of the palette’s name in the OneClick menu. (This is
the same as the “Display in Menu” checkbox in the Palette Editor.) If the property is 1
(True), the palette is always listed in the OneClick menu. If the property is zero
(False), the palette appears in the OneClick menu if it is open, but not when it is
closed. All palettes are listed in the menu when the OneClick Editor is open.

.IsGlobal Returns 1 (True) if the palette is global or 0 (False) if it is application-specific. (This is
the same as the “Global” checkbox in the Palette Editor.) You can set .IsGlobal to 0 or
1 to make the palette application-specific for the active application (0) or global (1).

If you change the .IsGlobal property of the palette containing the script, the palette is
temporarily unloaded from memory and script execution stops.

// Change the palette from global to app-specific or vice-versa.
// Same as clicking the Palette Editor's Global checkbox.
Palette.IsGlobal = NOT Palette.IsGlobal
// (Changes to 0 if set to 1, or changes to 1 if set to 0.)
Message "This line never executes because the palette gets unloaded from memory."

.Left Gets or sets the palette’s horizontal position on the screen.

// Move the palette to the left edge of the screen
8 ■

CHAPTER 8 ■ EASYSCRIPT REFERENCE

Palette object
Palette.Left = 0

// Move the palette to the right edge of the screen
Palette.Left = Screen.Width – Palette.Width

.List Returns a list of all available palettes. Use .List in a loop to cycle through all palettes
and perform some operation on each palette.

// Show a pop-up menu of all available palettes
Variable theChoice
theChoice = PopupMenu Palette.List

// Turn on (show) all the available palettes
Variable X, palList, thePalette
palList = Palette.List
For X = 1 To Palette.Count

thePalette = ListItems palList, X
Palette(thePalette).Visible = 1

End For

.Location Changes the palette’s location on the screen. The .Location property requires two
parameters (left and top) and is write-only. Using .Location is the same as using .Left
and .Top, except it redraws the palette only once instead of twice.

// Move the palette to 40 pixels down and 10 pixels from the left edge of the screen
Palette.Location = 10, 40

.MainScreen On multiple-monitor systems, returns the number of the screen on which the palette
appears. Returns 1 on single-monitor systems.

.Name Returns or sets the the name of the specified palette.

// Display the name of the palette containing the button’s script
Message Palette.Name

// Change the name of the palette named “Average Buttons” to “Super Buttons”
Palette("Average Buttons").Name = "Super Buttons"

.New The .New message creates a new palette. The palette specifier is the name of the new
palette. The palette is created with all the default properties specified in the Palette
Editor, except the palette is hidden. This lets your script change other properties
(size, location, color, and so on) and add new buttons before making the palette
visible. Adding the optional Global keyword following .New lets you create a global
■ 259

CHAPTER 8 ■ EASYSCRIPT REFERENCE

Palette object

26
palette. If you omit the Global keyword, then .New creates an application-specific
palette for the active application.

You can create a copy of an existing palette by assigning another palette to the new
palette using the following syntax:

Palette(palette-name).New = palette-to-copy

All the original palette’s properties (including its buttons) are copied to the new
palette, except the new palette isn’t made visible. By creating new palettes in this
manner, you don’t need to copy all the properties and buttons one at a time from the
original palette to the new palette.

To import a palette from a OneClick palette file, use this syntax:

Palette(palette-name).New = palette-name, palette-file

This is the same as importing a palette in the Palette Editor, except the new palette
isn’t made visible after it’s imported.

// Create a new palette named "Communications"
Palette("Communications").New
// Change the new palette’s size and location, then make it visible
Palette("Communications").Size = 100, 22
Palette("Communications").Location = 0, (Screen.Height – Palette.Height)
Palette("Communications").Visible = 1

// Create a new global palette named "Project Documents"
Palette("Project Documents").New Global
Palette("Project Documents").Visible = 1

// Copy the palette named "Launcher" to a new palette named "Launcher copy"
Palette("Launcher copy").New = "Launcher"
Palette("Launcher copy").Visible = 1

// Import the palette named "Welcome Screen" from the palette file "Screens"
Palette("My Screen").New = "Welcome Screen", "Mac HD:Extra Palettes:Screens"
Palette("My Screen").Visible = 1

.PICT The .PICT property lets you change a palette’s background PICT from within a script.
PICT resources can be stored in the palette file or in another resource file. Use the
format:

Palette(specifier).PICT = resourceID [, file-path]
0 ■

CHAPTER 8 ■ EASYSCRIPT REFERENCE

Palette object
Specify a the picture’s resource ID. For example, if a file contains 10 PICT resources
including IDs 128, 129, 140, 143, use one of those numbers to specify the PICT
resource. You can see which resources exist in the file with ResEdit. Specify 0 (zero) to
clear the background PICT.

If no file is specified, the PICT is loaded from the palette file. These “embedded” PICTs
must have resource IDs in the range 1–256. This tells OneClick to not delete the PICT
resource when the background PICT is changed.

// Set the background image to Apple Guide’s alpha slider
Palette.PICT = 303, (FindFolder "extn") & "Apple Guide"
Palette.PICT = 5 // Internal PICT stored in the palette file
Palette.PICT = 0 // Clear PICT

Note OneClick 1.0.3 and earlier used resource index numbers instead of resource
IDs for background PICTs. In OneClick 2.0, scripts that set the background PICT may
need to be changed if the PICT’s resource ID does not equal its index number (order
in the resource file).

.Size Changes the palette’s size. The .Size property requires two parameters (width and
height) and is write-only. Using .Size is the same as using .Width and .Height, except it
redraws the palette only once instead of twice.

Using zero (0) for either the height or width parameters fits the palette to enclose the
buttons (similar to clicking Fit To Buttons in the Palette Editor).

// Change the palette to 100 pixels wide by 22 pixels tall
Palette.Size = 100, 22

// Resize the palette to enclose all the buttons (same as "Fit To Buttons")
Palette.Size = 0, 0

.TitleBar Turns the palette’s title bar on or off, or gets the palette’s current title bar setting. Set
.TitleBar to 1 to turn on the title bar or 0 (zero) to turn it off.

// Toggle the palette’s title bar on or off
Palette.TitleBar = NOT Palette.TitleBar
■ 261

CHAPTER 8 ■ EASYSCRIPT REFERENCE

Palette object

26
.Top Gets or sets the palette’s vertical location on the screen. The palette’s top edge starts
at the top of the palette’s content area, not the top of its title bar. The title bar is 12
pixels tall.

// Move the palette to the top of the screen, just below the menu bar
// If the palette’s title bar is turned on, move the palette 12 pixels higher
If Palette.TitleBar

Palette.Top = 33
Else

Palette.Top = 21
End If

// Move the palette to the bottom of the screen
Palette.Top = Screen.Height – Palette.Height

.Update Forces the palette to redraw itself and all its buttons. Use the .Update message in a
script when you want OneClick to immediately redraw a palette after you change
palette or button properties. (If you change several properties of a button or palette
within a script, OneClick normally redraws the affected button or palette when the
script ends, not after each individual property change.)

// Make the two buttons named "A" and "B" flash between red and green 10 times
Repeat 10

Button("A").Color = 36 // red
Button("B").Color = 226 // green
Palette.Update
Button("A").Color = 226
Button("B").Color = 36
Palette.Update

End Repeat

.Visible Shows or hides the specified palette, or gets the palette’s current visible setting. Set
.Visible to 1 to show the palette or 0 (zero) to hide it. Visible palettes have a bullet (•)
next to their names in the OneClick menu.

// Turn on (show) all the available palettes
Variable X, palList, thePalette
palList = Palette.List
For X = 1 To Palette.Count

thePalette = ListItems palList, X
Palette(thePalette).Visible = 1

End For

// Assign a key shortcut to this script’s button to toggle the palette on or off with a keystroke
2 ■

CHAPTER 8 ■ EASYSCRIPT REFERENCE

PaletteMenu command
Palette.Visible = NOT Palette.Visible

.Width Gets or sets the palette’s width. Setting .Width to zero (0) adjusts the width so that all
buttons fit horizontally within the palette. (This is similar to clicking Fit To Buttons in
the Palette Editor, except only the width changes, not the height.)

// Toggle the palette between 100 pixels wide and the "Fit To Buttons" width
If Palette.Width = 100

Palette.Width = 0
Else

Palette.Width = 100
End If

PaletteMenu command
Syntax PaletteMenu

Description Shows the OneClick menu as a pop-up menu. This is the same menu as the one
available in palette title bars, the menu bar, and the Apple menu.

If you’ve turned off the OneClick menu in the Apple menu and the menu bar and
you’ve turned off the title bars on your palettes, you can use the PaletteMenu
command to add the OneClick menu to a palette.

Examples PaletteMenu

Pause command
Syntax Pause tenths

Description Stops script execution for the specified period of time. Tenths is a number that
specifies length of time to pause, expressed in tenths of a second.

The Pause command allows other processing to occur while the script is interrupted.
Background processing resumes and you can interact with the system during the
pause. It works the same as using the Wait command to wait for a certain number of
ticks.

Examples Pause 5 // pauses for half a second (5/10)
Pause 600 // pauses for one minute
Pause 20 // pauses for two seconds
■ 263

CHAPTER 8 ■ EASYSCRIPT REFERENCE

PopupFiles function

26
See Also Wait command (page 303)

PopupFiles function
Syntax PopupFiles [folder] [, file-type-list] [, suppress-parent-folders]

Description Pops up a hierarchical menu of all the files, folders, and volumes on the desktop and
returns the full path to the chosen file or folder.

Folder is a path to a volume or folder; if you specify folder, the pop-up menu shows
the files and folders in folder and lists higher-level folders and volumes at the bottom
of the menu, below the separator line. If you pass 1 (True) in the suppress-parent-
folders parameter, then the menu won’t list any higher-level folders and volumes.

File-type-list is a list of four-character file type codes, such as “TEXT”, “PICT”, and
“WDBN”. If you specify file-type-list, PopupFiles lists only folders and files of the
specified types.

Examples // Choose a Text or Microsoft Word file from within the Data folder, then open the chosen file
Open PopupFiles "Mac HD:Data", "TEXT<return>WDBN"

// Choose a file or folder from any volume and open it
Open PopupFiles

Sample PopupFiles menu

See Also PopupMenu function (page 265)
4 ■

CHAPTER 8 ■ EASYSCRIPT REFERENCE

PopupFont function
PopupFont function
Syntax PopupFont [font-name | font-id [, size]]

Description Displays a pop-up menu of all the characters in a font and returns the chosen
character as a one-character string.

Sample PopupFont menu

You can specify a font by its name or ID number and optionally specify the font size
(in points). If you don’t specify a font, the font defaults to Geneva; if you don’t specify
a size, the size defaults to 14.

Note The PopupFont function is an extension (external function). It’s not available if the
OneClick Extensions file is not installed in the Extensions folder inside the OneClick
Folder (in Preferences).

PopupFont works only in a MouseDown handler.

Examples Type PopupFont "Times"
Type PopupFont "Symbol", 12
Type PopupFont Menu("Font").Checked, MakeNumber Menu("Size").Checked

PopupMenu function
Syntax PopupMenu menu-list [, checked-item-list] | [, checked-item, …]

Description Returns the item selected from a pop-up menu. The menu-list parameter is the list of
text items that you want to appear in the menu.

To include a divider line in the menu, include a hyphen (-) as an item in the menu list.
■ 265

CHAPTER 8 ■ EASYSCRIPT REFERENCE

PopupMenu function

26
To indicate that a menu item is disabled (is gray in the menu and cannot be selected),
start the item’s name with a tilde (~).

The checked-item-list parameter is a list of one or more items to appear checked in
the menu. Checked items can be passed as a list of menu items in one parameter or as
multiple separate parameters. When passed separately, the checked-item parameters
can indicate either a menu item’s text or a numeric position in the menu.

Examples // Types the selected item from the Red, Green, Blue menu.
Type PopupMenu "Red<return>Green<return>Blue"

// Types the selected item from Red and Blue. Green is disabled.
Type PopupMenu "Red<return>~Green<return>Blue"

// Choose a planet from the pop-up menu. Venus is checked.
Variable theChoice
theChoice = PopupMenu "Mercury<return>Venus<return>Earth", "Venus"

// Choose a planet from the pop-up menu. Venus (item 2) and Mars (item 4) are checked.
Variable theChoice
theChoice = PopupMenu "Mercury<return>Venus<return>Earth<return>Mars", 2, 4

// Shows a pop-up menu of the Font menu.
SelectMenu "Font", PopupMenu Menu("Font").List

See Also PopupFiles function (page 264)
6 ■

CHAPTER 8 ■ EASYSCRIPT REFERENCE

PopupMenuFont system variable
PopupMenuFont system variable
Description Gets or sets the font used in all OneClick pop-up menus. You can specify the font by

its name or ID number. The font resets to the default font (Geneva) after the
computer starts up.

Example // Set the OneClick pop-up font and size to Charcoal 12 at startup
On Startup

PopupMenuFont = "Charcoal"
PopupMenuSize = 12

End Startup

// Save the current pop-up menu font and size, then display a menu
Variable oldFont oldSize
oldFont = PopupMenuFont
oldSize = PopupMenuSize
PopupMenuFont = "Helvetica"
PopupMenuSize = 24
Open PopupFiles
// Restore the previous font and size when the menu goes away
PopupMenuFont = oldFont
PopupMenuSize = oldSize

See Also EditorFont system variable (page 195), EditorSize system variable (page 195),
PopupMenuSize system variable (page 267)

PopupMenuSize system variable
Description Gets or sets the font size (in points) used in all OneClick pop-up menus. The size

resets to the default size (9-point) after the computer starts up.

Example PopupMenuFont = "Espy Sans"
PopupMenuSize = 9

See Also EditorFont system variable (page 195), EditorSize system variable (page 195),
PopupMenuFont system variable (page 267)

PopupPalette command
Syntax PopupPalette palette-name [, no-tear-off]
■ 267

CHAPTER 8 ■ EASYSCRIPT REFERENCE

PrintText command

26
Description Displays the palette named palette-name as a pop-up palette. You can choose a
button from the popped-up palette, or drag away from the palette to tear it off into a
floating palette. If you pass 1 (True) in the no-tear-off parameter, the palette pops up
but can’t be torn off.

Examples PopupPalette "Launcher"
PopupPalette "Calendar", 1 // pops up the palette but prevents it from being torn off

See Also PopupMenu function (page 265)

PrintText command
Syntax PrintText text [, format-string]

Description Prints text to the printer. You can specify the font and font size; top, left, bottom, and
right margins; begin and end pages; and whether or not to display the Page Setup and
Print dialog boxes.

Format-string can include any of the following formatting properties.

If a property is not specified, PrintText uses the default value. The Page Setup and
Print Dialog properties have no default values; the dialog boxes appear only if you
include the properties in the format string.

Property Description Default value

Font: Font ID or font name 3, Geneva

Size: Font size 10 point

From: Start page 1

To: Last page last page

Top: Top margin 72 (1 inch)

Left: Left margin 72 (1 inch)

Bottom: Bottom margin 72 (1 inch)

Right: Right margin 72 (1 inch)

Page Setup Displays Page Setup dialog box

Print Dialog Displays Print dialog box
8 ■

CHAPTER 8 ■ EASYSCRIPT REFERENCE

Process object
Margins are indicated in points (72 dots per inch).

The font name must be enclosed within curly quotes, such as “Helvetica”.

Examples // Print using the Page Setup and Print dialog boxes
PrintText "This text will be printed", "Top: 36, Bottom: 144, Page Setup, Print Dialog"

// Print the first page of the file using Courier 12
PrintText File("Macintosh HD:Read Me").Text, "To: 1, Font: “Courier”, Size: 12"

// Print the Clipboard contents in Geneva 10 with default 1-inch margins
PrintText Clipboard

Process object
Description A process is any open, running application or desk accessory, including the Finder. A

Process object lets you manipulate or get information about a running application.

You can specify a Process object three ways:

■ by name, as the name appears in the Application menu in the menu bar

■ by the application's creator code

■ by number

If you don’t specify an application, the Process object uses the frontmost application.

By name

Specify the Process object using the application's name as it appears in the Application
menu.

You can use wildcards when specifying processes by name. Use an asterisk (*) to
match multiple characters or a question mark (?) to match single characters. For
example, Process("Adobe Photoshop*") matches “Adobe Photoshop™ 2.5.1”, “Adobe
Photoshop 3.0”, and so on.

Specifying a process by its name is generally not a good idea. For example, if you
specify Process("WordPerfect™ 9.2.16"), it isn’t going to work with all the other
versions of WordPerfect. Also, names of some system applications (such as Finder)
may be different in other languages.
■ 269

CHAPTER 8 ■ EASYSCRIPT REFERENCE

Process object

27
By number

When specifying a process by number, Process(1) is the active application, Process(2)
is the previous application used, and so on. Process(0) is a shortcut for referencing
the Finder.

The Process object can access background-only applications which don’t appear in the
application menu (such as File Sharing Extension, Express Modem, and so on). Like
visible processes, you can specify them by name or creator. You can also refer to them
by a negative number (–1, –2, and so on). To loop through all background
applications, start with –1 and check Process.Exists, decrementing the specifier
number each time until Process.Exists returns 0 (False). Background-only processes
do not appear in Process.List and are not counted in Process.Count.

By creator code

When specifying a process by creator code, use the format:

Process("[type]:creator")

The four-character type code is optional; the colon (:) and creator code are required.

Note An easy way to find a file’s creator is to run Find File, choose “creator” from the
pop-up menu, and drag the file from the Finder to the text box area. You can also use
ResEdit to find a file’s creator.

Process("APPL:MSWD") // Finds application "Microsoft Word"
Process(":MSWD") // Finds anything (application, DA, etc.) with creator 'MSWD'
Process("FNDR:MACS") // Finds Finder

All Process properties (except for .Selection and .Visible) are read-only.

.Count Returns the total number of open, running processes. The .Count property is a
shortcut for ListCount Process.List.

.Creator Returns the four-character creator code for the specified process. For example, if
SimpleText is the active application, Process.Creator returns “ttxt”.

.Exists Returns True (1) if the specified process is open, otherwise False (0).

// Switch to FileMaker Pro if it’s open, otherwise display a message.
If Process("FileMaker Pro").Exists
0 ■

CHAPTER 8 ■ EASYSCRIPT REFERENCE

Process object
Process("FileMaker Pro").Front
Else

Message "FileMaker Pro isn’t running!"
End If

.Folder Returns a path to the folder containing the specified process.

// Get the path to the folder containing the SimpleText application
Variable theAppPath
theAppPath = Process("SimpleText").Folder
// Alternate method of getting the path to the folder containing SimpleText
theAppPath = Process(":ttxt").Folder

.Free Returns the amount of free memory (in bytes) in the specified process’ memory
partition. To determine the amount of free memory in K, divide the number of bytes
by 1024. To determine the amount of memory currently in use by an application,
subtract the number of free bytes (.Free) from the total number of bytes allocated
(.Size).

// Display the amount of free memory (in kilobytes) for the active application.
Message Process.Name & " has " & (Process.Free / 1024) & "K free"

.Front Brings the specified process to the front (makes it active).

To get the name of the active application, use Process.Name.

// Switch to the Finder
If Process.Name <> Process(0).Name // Process(0) means Finder

Process(0).Front
End If

// Switch back and forth between the two frontmost applications
Process(2).Front

.Index Returns the corresponding index number for the process when the process is
specified by name or creator code. Processes are indexed in front-to-back order using
1 for the first process (the active application), 2 for the second, and so on.

Faceless background processes, such as File Sharing Extension and Express Modem,
have negative index numbers beginning with –1 for the first background process, –2
for the second, and so on.
■ 271

CHAPTER 8 ■ EASYSCRIPT REFERENCE

Process object

27
.Kind Returns the four-character file type code for the specified process. The type code is
usually “APPL” (for applications) except for the Finder, whose type code is “FNDR”.
Desk accessories have the type code “dfil”.

.List Returns a list of all running processes. This list includes only applications that appear
in the Application menu. Background-only processes (such as File Sharing) aren’t
included.

.Name Returns the name of the specified process. The .Name property is useful if you want to
get the name of a process specified by number.

To make bring an inactive application to the front, use Process.Front.

// Get the name of the active application.
Variable theActiveApp
theActiveApp = Process.Name

// Type a list of all the active applications (same as Type Process.List)
Variable X
For X = 1 to Process.Count

Type Process(X).Name, Return
End For

.Quit Quits the specified process as if you had chosen Quit from the application’s File
menu. The .Quit message sends an Apple Event to the specified process, telling it to
quit.

// Quit the active application.
Process.Quit

// Quit all running applications except the Finder.
Variable appList appCount theApp X
appCount = Process.Count
appList = Process.List
For X = 1 to appCount

theApp = ListItems appList, X
If Process(theApp).Name <> "Finder"

Process(theApp).Quit
End If

End For

// Force the Finder to quit.
Process("Finder").Quit
2 ■

CHAPTER 8 ■ EASYSCRIPT REFERENCE

Process object
.Selection Uses Apple Events to get or set the text of the current selection in the specified
process. Setting an application’s selection using the .Selection property is faster than
typing text (using the Type command) or setting the Clipboard’s contents and pasting.
To the use .Selection property, however, the application must support the Apple
Events required to get and set the current selection, and most applications do not
currently support these events.

Microsoft Excel and the Mac OS 7.5 Finder do support these events. To determine if
another application supports them, select something in the application and then run
the following script:

Message Process.Selection

If the resulting message box is empty, chances are pretty good that the application
doesn’t support the events required to get or set the selection.

An application’s response to .Selection is usually different depending on the type of
data you work with in the application. For example, if you select the range of cells
A3:B5 in a Microsoft Excel worksheet named “Budget,” then Process.Selection returns
the string “Budget!R3C1:R5C2”—not the contents of the selected cells. If you select a
chart object in the worksheet, Process.Selection returns the name of the selected
chart.

In the Finder, Process.Selection returns the full path of the selected icon, or a list of
paths if more than one icon is selected.

// Get a list of paths of all the selected icons
Variable thePathList
thePathList = Process("Finder").Selection

// Open the Sharing window for the startup disk
Process("Finder").Selection = Volume.Name
// Give Finder time to select the icon before choosing the menu item
Wait (Process("Finder").Selection = Volume.Name)
SelectMenu "File", "Sharing…"

.SendAE Sends an Apple event to the specified process. If the event returns a response, you can
get the response by assigning the SendAE statement to a variable or by using the
SendAE statement in an expression. Sending Apple events with SendAE is much faster
than sending the equivalent events with AppleScript.
■ 273

CHAPTER 8 ■ EASYSCRIPT REFERENCE

Process object

27
OneClick does not directly send Apple events to an application; instead, it causes the
application to send events to itself. If the application can receive events but does not
support sending events, then the Finder sends the events.

The event to be sent must be formatted as a string in AEBuild format. This format may
look complicated in the examples below, but in most cases you don’t need to write
these strings yourself—the Capture AE control panel can record SendAE statements
for you. For more information on Capture AE, SendAE, and the AEBuild string format,
see the online document Using Capture AE and SendAE.

// Tell the active web browser to open WestCode Software’s home page
// This works with any web browser that supports the standard GetURL event
Process.SendAE "GURL,GURL,'----':“http://www.westcodesoft.com”"

// Tell the active web browser to open the URL on the Clipboard
Process.SendAE "GURL,GURL,'----':“" & Clipboard & "”"

// Tell America Online 2.7 to go to a keyword (may not work with AOL 3.0)
Variable keyword
keyword = "MUT" // Macintosh Utilities Forum
Process("America Online").SendAE "AOae,KWRD,'----':“" & keyword & "”"

// Tell BBEdit 4.0 to return the number of open windows
Variable numWindows
numWindows = Process("BBEdit 4.0").SendAE "core,cnte,'----':'null'(), kocl:type(cwin)"
Message numWindows

.Size Returns the total amount of memory (in bytes) allocated to the specified process. To
determine the application’s memory size in K, divide the number of bytes by 1024.

// Display the amount of memory used and total memory allocated in Kilobytes
Variable usedMemK, memSizeK, appName
appName = Process.Name
usedMemK = (Process.Size – Process.Free) / 1024
memSizeK = Process.Size / 1024
Message appName & " is using " & usedMem & "K out of the " & memSize & "K reserved for it."

.Visible Returns True (1) if the specified process is visible (showing on the screen) or False (0)
if it’s hidden. Setting .Visible to zero (0) hides the application as if you had chosen
Hide from the Application menu; setting .Visible to 1 shows the application.

Unlike choosing Hide from the Application menu, hiding the active application (using
Process.Visible = 0) does not bring another application to the front.
4 ■

CHAPTER 8 ■ EASYSCRIPT REFERENCE

Proper function
// Hide all applications except Finder, then switch to Finder
Variable X
For X = 1 to Process.Count

If Process(X).Name <> "Finder"
Process(X).Visible = 0

End If
End For
Process("Finder").Front

.Window Represents the Window objects of the specified process. Use the
Process(specifier).Window(specifier) notation to access windows in applications other
than the active application.

When you access a Window object as a property of a Process object, you can get any
window property and set most properties. You cannot set properties that require a
click on the window, such as sizing, zooming, windowshading.

// Move the second window of the second application to 35 pixels below the top of the screen
Process(2).Window(2).Top = 35

// Bring the selected Finder window to the front, no matter what application is active
Variable winList, theChoice
winList = Process("Finder").Window.List
theChoice = PopupMenu winList
If theChoice

Process("Finder").Front
If theChoice <> "Desktop"// don’t try to make the Desktop active; weird things happen!

Window(theChoice).Front
End If

End If

Proper function
Syntax Proper text

Description Returns text with each word capitalized.

Examples // Displays "Sunday, Monday, Tuesday" in a message box
Message Proper "sunday, monday, tuesday"

See Also Lower function (page 238), Upper function (page 299)
■ 275

CHAPTER 8 ■ EASYSCRIPT REFERENCE

QuicKey command

27
QuicKey command
Syntax QuicKey QuicKey-name

Description Plays the specified QuicKeys™ shortcut or shortcut sequence. To use this command,
you must have QuicKeys (version 2.0 or later) from CE Software installed. You don’t
need to run CEIAC (from QuicKeys 2.0) or QuicKeys Toolbox (from QuicKeys 3.0).

Note The QuicKey command is an extension (external command). It’s not available if the
QuicKey Extension file is not installed in the Extensions folder inside the OneClick
Folder (in Preferences).

Examples QuicKey "QuickReference Card"
QuicKey "Mount Imaging Server"

QuoteText function
Syntax QuoteText text [, line_length [, quote_char]]

Description Puts a ">" at the beginning of every line and a <return> at the end of each line and
returns the quoted text.

You can optionally specify the maximum number of characters on each line (the
default is 74). To prevent QuoteText from word-wrapping text, specify a line length
equal to or larger than the text length.

If you specify a value for quote_char it will be used instead of ">". Quote_char may
consist of any number of characters.

Examples Clipboard = QuoteText Clipboard
SelectMenu "Edit","Paste"

// Save the Clipboard contents
Variable oldText
oldText = Clipboard
Type Command "c"
ConvertClip
// Add “### ” to the beginning of each line without automatic word-wrap
Clipboard = QuoteText Clipboard, Length Clipboard, "### "
ConvertClip 1
Type Command "v"
// Restore previous Clipboard contents
6 ■

CHAPTER 8 ■ EASYSCRIPT REFERENCE

Random function
Clipboard = oldText
ConvertClip 1

Random function
Syntax Random [value]

Description Returns a random number. If value is supplied, the number is in the range of 1 to
value. If value is negative, Random returns a negative number.

If value is not supplied, the range is 1 to 65536.

Examples // Types a number between 1 to 65536 inclusive
Type Random

// Types a number between 1 to 10 inclusive
Type Random 10

// Types 100 negative random numbers between –2,147,483,647 and 1
Repeat 100

Type Random –2147483647, Return
End Repeat

Repeat, Next Repeat, Exit Repeat, End
Repeat commands

Syntax Repeat count
statements
[Next Repeat]
[Exit Repeat]

End Repeat

Description Repeats the script statements between the Repeat and End Repeat count number of
times.

You can use Next Repeat to skip to the next iteration of the Repeat loop, and you can
use Exit Repeat to prematurely exit the loop and continue executing the statements
following End Repeat.

Examples // Type 75 dashes
Repeat 75

Type "–"
■ 277

CHAPTER 8 ■ EASYSCRIPT REFERENCE

Replace function

27
End Repeat

// Get input five times. Play the Quack sound unless the input is "shut up"
Variable theText
Repeat 5

theText = AskText "Type some text:"
If theText = "shut up"

Message "Okay!"
Next Repeat

End If
Sound "Quack"

End Repeat
Message "All done"

See Also For, Next For, Exit For, End For commands (page 219)

Replace function
Syntax Replace find-text, in-text, replace-text [, replace-all]

Description Returns the string procured by finding find-text in in-text and replacing it with
replace-text. If find-text is not found, it returns in-text unchanged.

The function replaces only the first occurrence of find-text, not all occurrences. To
replace all occurrences, pass 1 (True) in the optional replace-all parameter.

Examples // Types "Snippy"
Type Replace "oo", "Snoopy", "ip"

// Types "Hellothere"
Type Replace " ", "Hello there", ""

// Types "Middiddippi"
Type Replace "iss", "Mississippi", "idd", 1

See Also Find function (page 212)

Return function
Syntax Return

Description Returns the carriage return character (the character generated by pressing the Return
key).
8 ■

CHAPTER 8 ■ EASYSCRIPT REFERENCE

Schedule command
Examples // Types three blank lines
Type Return Return Return

See Also Tab function (page 295)

Schedule command
Syntax Schedule tenths [, run-always]

Schedule schedule-type [, run-always]

Description Causes the script to automatically run its Scheduled handler every tenths tenths of a
second, or when the event specified by schedule-type occurs. Use Schedule 0 to turn
off all of a script’s schedules.

A script’s Scheduled handler runs only if its palette is visible. To have the Scheduled
handler run even if the palette is hidden, include 1 (True) in the run-always
parameter.

It’s useful to have a Schedule command in a script’s Startup handler so that the
schedule starts as soon as the application starts. Otherwise, the schedule won’t start
until you click the button. If you are doing a timed schedule, you must set it first,
followed by any of the event schedules.

Scheduling for certain event types

In addition to having a script’s Scheduled handler called at regular intervals, you can
have the handler called when any of the following events occur.

Schedule
Number

Type Description

–1 Process start Runs when an application starts up. Process.Name contains the
name of the application that just started.

–2 Process quit Runs after an application has quit. The application that quit is no
longer in Process.List when this handler runs.

–3 Process switch Runs when you switch from one application to another.
Process.Name contains the name of the application after the
switch.
■ 279

CHAPTER 8 ■ EASYSCRIPT REFERENCE

Schedule command

28
Use the Schedule command with one of the specified negative numbers to set up an
event schedule. For example:

Schedule 30 // Call Scheduled handler every 3 seconds (timed schedule)
Schedule –1 // Call Scheduled handler every time a process starts
Schedule –4 // Call Scheduled handler every time a different window is in front (not
called on process switch)

Examples // Play the Quack sound every two seconds.

–4 Window switch Runs when you switch from one window to another in the active
application. Window.Name contains the name of the window
after the switch. Window switch also occurs if you close a
window and there are no more open windows or if you open the
first window. The schedule does not run when switching
between windows in two different applications if the window in
the new application does not change.

–5 Menu bar redraw Runs any time the menu bar is redrawn. This is usually done
whenever the application adds, removes, enables, or disables
menus. Generally it is a signal of a major mode change in the
application.

–6 Mouse enter/exit Runs when the cursor moves over a different OneClick button or
when the cursor moves off a button.

–7 Palette show/hide Runs when a palette is going to change state between visible and
invisible. The script's Scheduled handler is called before the
palette changes state, so the Palette.Visible flag indicates the
status before the change. Only buttons that are on the palette
that is changing will receive this scheduled event.

–8 Cursor change Runs whenever the cursor changes (from a watch to the arrow,
for example).

–9 Monitor change Runs whenever a monitor changes resolution or position. For
example, the handler runs if you change the monitor from
640x480 to 1024x768, or if you change monitor positions in the
Monitors & Sound control panel.

–10 Editor closed Runs whenever the OneClick Editor window has closed.

Schedule
Number

Type Description
0 ■

CHAPTER 8 ■ EASYSCRIPT REFERENCE

Scheduled handler
Schedule 20
On Scheduled

Sound "Quack"
End Scheduled

// Check for new e-mail every ten minutes from the time the application starts up.
// Run even if the palette is hidden.
On Startup

Schedule 6000, 1
End Startup
On Scheduled

SelectMenu "Mail", "Check Mail"
End Scheduled

// Play sounds whenever applications start or quit
On Startup

Schedule - 1 // process start
Schedule - 2 // process quit

End Startup

On Scheduled
If ScheduleType = - 1

Sound "AppOpen"
Else If ScheduleType = - 2

Sound "AppClose"
End If

End Scheduled

See Also Scheduled handler (page 281), ScheduleType system variable (page 282), Startup
handler (page 294)

Scheduled handler
Description A script’s Scheduled handler executes each time a Scheduled event occurs.

Use the Schedule command to turn on scheduling for a script. (If you want scheduling
to run all the time, put the Schedule command in the script’s Startup handler.) You
can specify how often the Scheduled handler should run in increments of 1/10th of a
second. Scheduled scripts run only when the Macintosh is idle (waiting for keyboard
or mouse input).

Normally, a Scheduled handler runs only when its palette is visible; the scheduling
stops if the palette is hidden, then resumes when the palette is made visible again. To
■ 281

CHAPTER 8 ■ EASYSCRIPT REFERENCE

ScheduleType system variable

28
have a Scheduled handler run even if its palette is hidden, include 1 (True) in the
Schedule command’s optional run-always parameter.

Examples // Play the Quack sound every five seconds from the time the application starts up.
On Startup

Schedule 50
End Startup

On Scheduled
Sound "Quack"

End Scheduled

// Turn on scheduling for this script when the button is clicked.
// Run even if the palette is hidden.
Schedule 100, 1

// This handler runs once every ten seconds. It checks the contents of a folder and displays
// a message box whenever new files appear in the folder. It then moves the new files
// to a different folder (leaving the original folder empty again) and opens the folder.
On Scheduled

Variable theServerPath, myPath
theServerPath = "Accounting Server:Orders to Process:"
myPath = "Accounting Server:Donna’s Orders:"
// The following statements run only if there are one or more files in "Orders to Process".
If File(theServerPath).List <> ""

Message "There are new files in " & theServerPath
// Move all the files in "Orders to Process" to "Donna’s Orders".
Directory = theServerPath
FinderMove File(theServerPath).List, myPath
// Open "Donna’s Orders".
Open myPath

End If
End Scheduled

See Also Scheduling a script to run periodically (page 136), Schedule command (page 279),
Startup handler (page 294)

ScheduleType system variable
Description Returns the type of scheduled task for which the handler is being called. See the

Schedule command (page 279) for a list of schedule types and what they’re used for.

Example On Scheduled
If ScheduleType = 0
2 ■

CHAPTER 8 ■ EASYSCRIPT REFERENCE

Screen object
// Timed schedule
Else If ScheduleType = –3

// Process switch
End If

End Scheduled

See Also Schedule command (page 279)

Screen object
Description The Screen object lets you get information about and set options for the monitor(s)

connected to your Macintosh. If you have only one monitor, then the Screen object
needs no specifier. If you have more than one monitor, then using Screen without a
specifier refers to the main (menu bar) monitor, Screen(2) refers to the second
monitor, and so on. Screens are numbered as they appear in the Monitors & Sound
control panel.

.Color Gets or sets the Colors and Grays options in the Monitors & Sound control panel.
Setting .Color to 1 switches the monitor to colors and setting .Color to 0 (zero)
switches it to grays.

// Change the monitor to grayscale mode
Screen.Color = 0

.Count Returns the number of monitors connected to the computer.

If Screen.Count = 1
Message "This is a standard configuration."

Else If Screen.Count = 2
Message "You’re a Power User."

Else If Screen.Count >= 3
Message "Beware of electromagnetic radiation!"

End If

.CursorScreen Returns a number indicating which screen the cursor is on.

.CursorX Sets or returns the current global horizontal position of the cursor.

// Move the cursor to 40 pixels from the left, 80 from the top
Screen.CursorX = 40
Screen.CursorY = 80
■ 283

CHAPTER 8 ■ EASYSCRIPT REFERENCE

Screen object

28
.CursorY Sets or returns the current global vertical position of the cursor.

.Depth Gets or sets the number of colors displayed on the monitor. The .Depth property uses
a number (the bit depth) to determine the number of colors. The following table
shows bit depth values and the corresponding settings in the Monitors & Sound
control panel; your system may not support all the bit depths listed here.

// Switch to millions of colors before opening Adobe Photoshop
Screen.Depth = 32
Open "Mac HD:Applications:Adobe Photoshop:Adobe Photoshop™ 2.5.1"

.Exists Determines if the specified monitor exists. This property is useful in determining if
more than one monitor is connected.

// Display a message if only one monitor is connected
If NOT Screen(2).Exists

Message "Can’t find a second monitor"
End If

.Height Returns the height (in pixels) of the specified monitor. Getting the screen’s height is
useful when you want to position palettes or windows at (or near) the bottom of the
screen.

// Move the palette to the bottom of the screen
Palette.Top = Screen.Height – Palette.Height

.Left Returns the location of the left edge of the specified monitor relative to Screen(1), the
main (menu bar) monitor. For single-monitor systems, .Left always returns 0. If you
have a second monitor connected, Screen(2).Left returns the left edge of the second

.Depth value Control panel setting

1 Black & White

2 4

4 16

8 256

16 Thousands

32 Millions
4 ■

CHAPTER 8 ■ EASYSCRIPT REFERENCE

Screen object
monitor relative to the left edge of the main monitor. For example, assume the
following:

■ you have two monitors

■ the main monitor is 1152 pixels wide by 870 pixels tall

■ the second monitor is 832 pixels wide by 624 pixels tall

■ the second monitor is positioned to the right of the main monitor

In this setup, Screen(2).Left returns 1152 because the main monitor goes from 0 (on
the left edge) to 1151 (on the right). If the second monitor was positioned to the left
of the main monitor, then Screen(2).Left would return –832.

Note Depending on your computer model and system software version, your Monitors
control panel may look different than the picture above.

// Position the palette in the upper-right corner of the second monitor.
Palette.Left = Screen(2).Left + Screen(2).Width – Palette.Width
Palette.Top = Screen(2).Top + 12

.Maximum Returns the maximum bit depth supported by the specified screen. The .Maximum
property returns its value as a number of bits (1, 2, 4, 8, 16, or 32). See the .Depth
property for a table of bit depth values and their meanings.

.Top Returns the location of the top edge of the specified monitor relative to Screen(1), the
main (menu bar) monitor. For single-monitor systems, .Top always returns 0. If you
have a second monitor connected, Screen(2).Top returns the top edge of the second
■ 285

CHAPTER 8 ■ EASYSCRIPT REFERENCE

ScriptInterrupts system variable

28
monitor relative to the top edge of the main monitor. (See the .Left property for an
explanation of how this works.)

.Update Forces the Macintosh to redraw the entire contents of the screen, including the menu
bar, the desktop, and all windows and palettes. Use Screen.Update when some other
program malfunctions and leaves garbage on the desktop or in a window.

.Width Returns the width (in pixels) of the specified monitor. Getting the screen’s width is
useful when you want to position palettes or windows at (or near) the right edge of
the screen.

// Move the palette to the right edge of the screen
Palette.Left = Screen.Width – Palette.Width

ScriptInterrupts system variable
Description Stops or restarts the script’s ability to be interrupted during execution.

The ScriptInterrupts system variable is normally True (1), which means that scripts
that take a while to execute will get interrupted occasionally to allow other system
processes to run. Setting it to False (0) allow the script to run uninterrupted. This may
be necessary in scripts where the script environment can’t be allowed to change by
other scripts, the user, or an application.

Normally, script interrupts shouldn't be left off for extended periods of time.

It is not necessary to restore ScriptInterrupts to True at the end of the script. It is
automatically restored.

Example // Turn off script interrupts
ScriptInterrupts = 0

Scroll command
Syntax Scroll [Page] Up | Down | Left | Right [, window-specifier]

Description Simulates clicking a window’s scroll bar. Add the Page keyword to scroll a page at a
time.
6 ■

CHAPTER 8 ■ EASYSCRIPT REFERENCE

SelectButton command
The Scroll command scrolls the active window by default. To scroll a different
window, specify a window name or number in the optional window-specifier
parameter.

Examples // Scroll down one line
Scroll Down

// Scroll up one page
Scroll Page Up

// Click the right scroll arrow on the horizontal scroll bar
Scroll Right

SelectButton command
Syntax SelectButton [Command] [Option] [Control] [Shift] [Check | Uncheck] button-name | index

Description Simulates clicking a button in a dialog box. Button-name is the name of the button to
click. SelectButton lets you click regular pushbuttons, radio buttons, and checkboxes.

You can also specify dialog box buttons by number. Specifying by number is necessary
when buttons have duplicate names. To determine the number of a dialog box button,
use the Button item in the Parameters pop-up menu in the Script Editor. The first
button is 1, the second is 2, and so on.

When SelectButton clicks a checkbox, the checkbox is toggled either on or off. Use the
Check or Uncheck keywords to force a checkbox on or off. (SelectButton Check turns
a checkbox on if it’s off; SelectButton Uncheck turns a checkbox off if it’s on.)

To simulate holding down a modifier key while clicking the button, add one or more
of the following keywords in any order: Command, Option, Control, or Shift.

You can use wildcard characters to match button names. ‘?’ matches a single character
and ‘*’ matches zero or more characters.

The ‘*’ wildcard is useful for clicking buttons whose names end in an ellipsis (…)
character: while most programs use a true ellipsis (Option-semicolon), some
programs use three periods instead. If your script uses three periods when specifying
a button name, then SelectButton won’t find the button if its name ends in an ellipsis.
Use the ‘*’ wildcard to click a button without caring whether it has an ellipsis or three
periods.
■ 287

CHAPTER 8 ■ EASYSCRIPT REFERENCE

SelectMenu command

28
Note Some applications use non-standard button controls that may look like regular
buttons. To click these kinds of buttons, use the Click command instead and specify
the button’s X and Y coordinates.

If you click a non-standard button control while recording a script, OneClick records
the click as a Click statement instead of a SelectButton statement.

Examples SelectButton "OK"
SelectButton "Cancel"

// Click the Generate… button
SelectButton "Genera*"

// Uncheck the Smooth Text checkbox if it’s checked
SelectButton Uncheck "Smooth Text"

See Also DialogButton object (page 187)

SelectMenu command
Syntax SelectMenu [Command] [Option] [Control] [Shift] [Check | Uncheck] menu, [menu, …] item

Description Selects item from the specified menu.

Menu can be either a menu name or number. Menu 1 is the first menu on the left (the
Apple menu). Menu 2 is the second menu from the left (normally the File menu).
Specifying a negative number goes from the right. Menu –1 is the rightmost menu
(the Application menu).

SelectMenu also understands the following pseudo menu names for certain icon
menus in the menu bar. You can use these menu names in place of menu numbers.

Menu Pseudo menu name

Apple menu [Apple]

OneClick menu [OneClick]

Help (or Guide) menu [Balloon]

Application menu [Process]
8 ■

CHAPTER 8 ■ EASYSCRIPT REFERENCE

SelectMenu command
Item can be either a menu item name or number. Item 1 is the first item in the menu.
Dividing lines in the menu are included in the count. Negative numbers go from the
bottom. Menu –1 is the last item in the menu.

To choose an item from a hierarchical menu, specify two or more menus (the path to
the menu) before the menu item.

If you specify menu 0 (zero), OneClick searches through all of the application’s
menus (including hierarchical menus) to find the specified menu item. When you use
0 as the menu specifier, the menu item to search for must be a text string, not a
number. This searching ability is great for global palette buttons that don’t know in
which menu the item may appear.

To simulate holding down a modifier key while selecting the menu item, add one or
more of the following keywords in any order: Command, Option, Control, or Shift.

You can use wildcard characters to match menu and item names. ‘?’ matches a single
character and ‘*’ matches zero or more characters.

The ‘*’ wildcard is useful for choosing menu items that end in an ellipsis (…)
character: while most programs use a true ellipsis (Option-semicolon), some
programs use three periods instead. If your script uses three periods when specifying
a menu item, then SelectMenu won’t find the menu item if it ends in an ellipsis. Use
the ‘*’ wildcard to select a menu item without caring whether it has an ellipsis or
three periods.

Note Some applications don’t update their menus (enable, disable, check or uncheck menu
items) until you click in the menu bar. Because OneClick selects menu items without
clicking the menu bar, SelectMenu may not work correctly when it tries to choose a
menu item that appears disabled, or choose an unchecked menu item that appears
checked. To get around this problem, use Menu.Update to force the application to
update its menus.

Examples SelectMenu "File", "Print"
SelectMenu "Edit", "Copy"
SelectMenu 3, 4 // selects Copy from the Edit menu
SelectMenu –1, "Finder" // selects Finder from the Application menu
SelectMenu "Window", –1 // selects the last window from the Window menu

// Force the application to update the checkmarks in its menus
Menu.Update
// Choose Plain Text from the Style menu only if it’s not already checked in the menu
■ 289

CHAPTER 8 ■ EASYSCRIPT REFERENCE

SelectPopUp command

29
SelectMenu Check "Plain Text"

// Search every menu for the Bold command
SelectMenu 0, "Bold"

// Choose Definitions… from the Color submenu in the View menu
// It doesn’t matter if Definitions... ends in an ellipsis or three periods
SelectMenu "View", "Color", "Defini*"

See Also SelectPopUp command (page 290), Menu object (page 240)

SelectPopUp command
Syntax SelectPopUp [Global] X, Y, item

Description Chooses item from the pop-up menu at the coordinates X and Y. If the pop-up menu
is in a window or dialog box, specify the menu’s location using the window or dialog
box’s local coordinates. If the pop-up menu is somewhere else on the screen (not in a
window or dialog box), use global coordinates and add the Global keyword.

Examples SelectPopUp 28, 382, "Center"
SelectPopUp 66, 389, "Top of Right Page"
SelectPopUp 114, 390, "Column First"

See Also SelectMenu command (page 288)

Set command
Syntax Set variable = value

Description Stores a value in a variable.

The Set keyword is optional; you can omit it if you want.

Examples Variable A, X
Set A = "Monday"
Set X = 5 * 7

See Also Variable command (page 300)
0 ■

CHAPTER 8 ■ EASYSCRIPT REFERENCE

SetICPref command
SetICPref command
Syntax SetICPref preferenceKey, value

Description Assigns a value to the specified preference in Internet Preferences. Only simple text
string and file path preferences can be set; complex preferences (such as font settings,
color settings, extension mappings, and so on) cannot be set.

For a list of valid preference keys supported by Internet Config 2.0, see “GetICPref
function” on page 222.

Examples SetICPref "RealName", "Cole Deschanel"
SetICPref "DownloadFolder", "Mac HD:Downloads:"

See Also GetICPref function (page 222), GetICHelpers function (page 222)

Author Info SetICPref, part of IC Extension
Copyright © 1998 Life OnLine Software (lr). All rights reserved.

SetScrap command
Syntax SetScrap data, resourceType

Description Puts data on the Clipboard as the specified resource type. Use GetScrap and SetScrap
instead of the Clipboard system variable when you want to work with data types other
than plain text.

Examples SetScrap "just some words", "TEXT"
SetScrap pictData, "PICT"

// Get a TEXT/styl (styled text) resource pair from a file and put the styled text on the Clipboard
Variable theText, theStyle, theFile
theFile = "Mac HD:Desktop Folder:My Resource File"
theText = GetResource theFile, "TEXT", 128
theStyle = GetResource theFile, "styl", 128
SetScrap theText, "TEXT"
SetScrap theStyle, "styl"

Author Info SetScrap, part of Scrap Extension
Copyright © 1999 Life OnLine Software (lr). All rights reserved.
■ 291

CHAPTER 8 ■ EASYSCRIPT REFERENCE

ShiftKey system variable

29
ShiftKey system variable
Description Returns True (1) if the Shift key was held down when the button was clicked to run

the script. Cannot set this system variable.

Use CommandKey, ControlKey, OptionKey, and ShiftKey to create buttons that
perform different actions based on the modifier key (or keys) that are pressed when
you click the button.

Examples // When clicked, show a pop-up menu of apps. If Shift-clicked, open all apps in the menu.
Variable theAppList, netFolder, X
netFolder = "Mac HD:Internet:"
theAppList = "Eudora<return>NewsWatcher<return>Netscape"
If ShiftKey

For X = 1 to ListCount theAppList
Open netFolder & (ListItems theAppList, X)

End For
Else

Open netFolder & (PopupMenu theAppList)
End If

See Also CommandKey system variable (page 177), ControlKey system variable (page 179),
OptionKey system variable (page 255)

Sound command
Syntax Sound [sound-name]

Description Plays the specified sound, or a random sound if no sound name is given. The sound
must be stored in the System file or the active application. To see what sounds are
available in the system and the active application, use the Sound submenu in the
Script Editor’s Parameters pop-up menu.

Examples Sound
Sound "Quack"

See Also Beep command (page 157)
2 ■

CHAPTER 8 ■ EASYSCRIPT REFERENCE

SoundLevel system variable
SoundLevel system variable
Description Returns the current system sound level (volume), or sets the sound level to a new

value. It’s the same as adjusting the Computer System Volume on the Sound panel of
the Monitors & Sound control panel.

The sound level can be zero (no sound) to 7 (highest sound level).

Examples // Save the current sound level and set it to the highest value before running Maelstrom.
// Option-clicking the button restores the previous sound level.
Variable Static savedVolume
If NOT OptionKey

savedVolume = SoundLevel
SoundLevel = 7
Open "Mac HD:Games:Maelstrom 1.4.0"

Else
SoundLevel = savedVolume

End If

See Also BeepLevel system variable (page 158), Beep command (page 157), Sound
command (page 292)

Speak command
Syntax Speak text [, voice]

Description Speaks the value of text (a string) using the default voice. The optional voice lets you
specify which voice file to use when speaking. (Voices are stored in the Voices folder
in the Extensions folder.)

The Speak command requires the Speech Manager extension, included with AV-
capable computers and with Mac OS 7.5.

Note The Speak command is an extension (external command). It’s not available if the
OneClick Extensions file is not installed in the Extensions folder inside the OneClick
Folder (in Preferences).

Examples Speak "OneClick is the Killer App of the Nineties!"
Speak "I want my mother", "Princess"
■ 293

CHAPTER 8 ■ EASYSCRIPT REFERENCE

Startup handler

29
Startup handler
Description A script’s Startup handler executes automatically when the application starts up.

Startup handlers on global palettes execute after the computer starts up. A Startup
handler runs even if the script’s button or palette is hidden.

If you make changes to a script that contains a startup handler, or duplicate a button
whose script contains a startup handler, the handler runs immediately after you close
the OneClick Editor window.

Examples // Turn on scheduling for this script.
On Startup

// Make the Scheduled handler run every five seconds.
Schedule 50

End Startup

// Show the palette (if it’s hidden) when the application starts up.
On Startup

Palette.Visible = 1
End Startup

SubString function
Syntax SubString string, start [, end]

Description Returns a portion of string. Start indicates the position of the character to start from
and end indicates the position of the last character. If end is not supplied, SubString
returns characters from start to the last character in the string. Both start and end
may be negative numbers indicating their position from the end of the string.

Examples // Types: is
Type SubString "This is it.", 6,7

// Types: ello
Type SubString "Hello", 2

// Types: SS
Type SubString "Annuities (SS)", –3, –2

See Also ListItems function (page 236)
4 ■

CHAPTER 8 ■ EASYSCRIPT REFERENCE

SystemFolder system variable
SystemFolder system variable
Description Returns the path to the System Folder on the startup disk. You cannot set this system

variable.

Using the SystemFolder variable is a shortcut to typing the actual path in your scripts
(or using FindFolder “macs”). Using SystemFolder (or FindFolder) is recommended if
you plan on sharing your scripts with others.

Examples // Open the Views control panel
Open SystemFolder & "Control Panels:Views"

See Also FindFolder function (page 216)

SysVersion system variable
Description Returns the Mac OS version as a whole number. Version 7.5 returns 750, 8.5.1 returns

851, and so on. You cannot set this system variable.

Example // Display a message and exit if we’re running a version of Mac OS earlier than 8.1.
If SysVersion < 810

Message "You need Mac OS 8.1 or later to use this palette."
Exit

End If

See Also Version system variable (page 301)

Tab function
Syntax Tab

Description Returns the tab character (the character generated by pressing the Tab key).

Examples // Insert three tab characters at the current cursor position
Type Tab Tab Tab

See Also Return function (page 278)
■ 295

CHAPTER 8 ■ EASYSCRIPT REFERENCE

TextWidth function

29
TextWidth function
Syntax TextWidth text [, fontname] [, size] [, style]

Description Returns the width of a line of text (in pixels) using the specified fontname, size, and
style number. If you omit any of the optional parameters, TextWidth uses default
values of Geneva, 9-point, plain style in place of any missing parameters.

The style parameter is a number you can specify yourself or get from a button's
.TextStyle property. Add style numbers together to combine styles.

Examples // Get the width of the text in Palatino 12-point bold, italic
Variable W
W = TextWidth "sample text to measure", "Palatino", 12, 3

// Get the width of the text in Geneva 9-point plain
W = TextWidth "sample text to measure"

// Set the button's width to the width of its text.
// Allow extra room for the button's border width, which can be
// anywhere from 3 to 17 pixels depending on the border style.
Variable Extra
Extra = 7 // left + right border widths
With Button

.Border = 1

.Width = Extra + TextWidth .Text, .TextFont, .TextSize, .TextStyle
End With

Author Info TextWidth, part of FitText Extension
Copyright © 1999 Jeff Jungblut. All rights reserved.

See Also TruncText function (page 297), Button object (page 158)

Ticks system variable
Description Returns the number of ticks (1/60th of a second) since the computer was started. You

cannot set this system variable.

0: Plain Text 1: Bold 2: Italic

4: Underline 8: Outline 16: Shadow

32: Condense 64: Extend
6 ■

CHAPTER 8 ■ EASYSCRIPT REFERENCE

Trim function
Use Ticks to measure time intervals in 1/60ths of a second.

Examples // Quack for 10 seconds
Variable saveTicks
saveTicks = Ticks
While (Ticks – saveTicks < 600) // 60 ticks per second

Sound "Quack"
End While

See Also Pause command (page 263), Wait command (page 303)

Trim function
Syntax Trim text

Description Returns text with extra spaces removed. Extra spaces are spaces at the beginning or at
the end of the string or more than one space in a row. Trim removes spaces only, not
Tab or Return characters.

Examples // Types "Alan L. Bird"
Type Trim " Alan L. Bird "

True system variable
Description Returns the number 1.

See Also False system variable (page 199)

TruncText function
Syntax TruncText width, where, text [, fontname] [, size] [, style]

Description Truncates a line of text in the given fontname, size, and style so that it fits within
width pixels and returns the truncated text, or the original text if no truncation is
necessary.

Where indicates where the truncation should occur: 0 (zero) for the end of the text or
1 for the middle. TruncText places an ellipsis character (…) at the point where the
truncation occurred, if any.
■ 297

CHAPTER 8 ■ EASYSCRIPT REFERENCE

Type command

29
If you omit any of the optional parameters, TruncText uses default values of Geneva, 9-
point, plain style in place of any missing parameters.

The style parameter is a number you can specify yourself or get from a button's
.TextStyle property. Add style numbers together to combine styles.

Examples // Truncate a button's text so that it fits within the button's width.
// Allow extra room for the button's border width, which can be
// anywhere from 3 to 17 pixels depending on the border style.
Variable Extra
Extra = 7 // left + right border widths
With Button

.Border = 1

.Text = TruncText .Width - Extra, 0, .Text, .TextFont, .TextSize, .TextStyle
End With

Author Info TruncText, part of FitText Extension
Copyright © 1999 Jeff Jungblut. All rights reserved.

See Also TextWidth function (page 296), Button object (page 158)

Type command
Syntax Type [Command] [Option] [Control] [Shift] text [, text, …]

Description Types the value of text (a string) as if you had typed it from the keyboard. You can
specify one or more text values to type.

To simulate holding down a modifier key, include one or more of the following
keywords in any order: Command, Option, Control, or Shift.

Note When typing in menu key equivalents from a script, it’s best to use lowercase letters
instead of uppercase. Some third-party extensions that modify menu equivalent
behavior do not expect an uppercase letter, because you don’t usually hold down the
Shift key when typing a menu equivalent.

Examples Type "Hello there."

0: Plain Text 1: Bold 2: Italic

4: Underline 8: Outline 16: Shadow

32: Condense 64: Extend
8 ■

CHAPTER 8 ■ EASYSCRIPT REFERENCE

Upper function
// types 28
Type 3 + 25

// types 11/9/99, 5:00 PM
Type Date, ", ", Time

// types Command-B
Type Command "b"

// type Command-S, then Command-P
Type Command "sp"

See Also KeyPress command (page 231)

Upper function
Syntax Upper text

Description Returns text with all letters changed to uppercase.

Examples // Types "THIS IS IT."
Type Upper "This is IT."

See Also Lower function (page 238), Proper function (page 275)

UserHandler1 … UserHandler5 handlers
Description UserHandler1 through UserHandler5 are five handlers you can use as subroutines—

containers for common code used by more than one button. In cases where you write
a single group of statements that needs to be included in several different buttons,
instead of repeating the statements in each button, you can place the statements in a
UserHandler in one button and have the other buttons Call that handler.

Examples Call UserHandler1, "Common" // Executes statements in UserHandler1 on button “Common”

// This script is in a button named “Routines”
On UserHandler4

// This is an error-handling subroutine that plays the sound named in g_theErrSound,
// displays the error text in a message box, and appends the error text and the time
// the error occurred to a log file whose path is in g_theErrLog.
// When the handler is finished, it returns to the script that called it.
Variable Global g_theErrSound, g_theErrMessage, g_theErrLog
■ 299

CHAPTER 8 ■ EASYSCRIPT REFERENCE

Variable command

30
Sound g_theErrSound
Message g_theErrMessage
If g_theErrLog // path of error log (a text file)

File(g_theErrLog).Append = (Time 1) & " " & g_theErrMessage & Return
End If

End UserHandler4

// This script is in a button named “Check Files” and calls the UserHandler4 handler in “Routines”
Variable Global g_theErrSound, g_theErrMessage, g_theErrLog
g_theErrSound = "Indigo"
g_theErrLog = (FindFolder "desk") & "Sample Error Log"
// Check to see if Drag and Drop is available. If not, call our error routine -- UserHanlder4.
If NOT (Gestalt "drag", 0)

g_theErrMessage = "Drag and Drop isn't available!"
Call UserHandler4, "Routines"

End If
// Check to see if the file "Rosario" exists on the desktop. If not, call our error routine.
If NOT File((FindFolder "desk") & "Rosario").Exists

g_theErrMessage = "Can’t find the Rosario file!"
Call UserHandler4, "Routines"

End If

See Also Call command (page 171), Calling scripts as subroutines (page 128), Calling scripts
as functions (page 128)

Variable command
Syntax Variable [Global | Static] variable-name [, variable-name, …]

Description Declares variables for use in a script or handler. Variables are local by default; add the
Global or Static keywords to declare global or static variables. A variable can be static
or global, but not both.

Variable names can contain only letters, numbers, and the underscore (_) character
and must start with a letter. They can contain both upper and lowercase letters. (It’s a
good idea to begin variable names with a lowercase letter to differentiate them from
other script keywords.) When a variable name consists of two or more words, you can
improve the name’s readability by capitalizing the first letter of each word or
separating the words with underscore characters.

Examples // Declare two local variables named X and Y
Variable X, Y
0 ■

CHAPTER 8 ■ EASYSCRIPT REFERENCE

Version system variable
// Declare a local variable named dayName and two global variables named dayNum and dayVal
Variable dayName Global dayNum dayVal

// Declare a static variable named lastRunDate
Variable Static lastRunDate

See Also Variables (page 94)

Version system variable
Description Returns the OneClick version as a whole number. Version 1.0 returns 100, 1.0.3

returns 103, 2.0 returns 200, and so on. You cannot set this system variable.

Example // Display a message and exit if we’re running a version of OneClick earlier than 1.5.
If Version < 200

Message "You need OneClick version 2.0 or later to use this palette."
Exit

End If

See Also Implemented function (page 229), SysVersion system variable (page 295)

Volume object
Description The Volume object lets you eject, unmount, or get information about any mounted

disk—including hard disks, floppy disks, CD-ROMs, and file server volumes. You can
specify a volume either by name or by number. Using Volume without a specifier
refers to the startup disk. When specifying a volume by name, include a colon (:) at
the end of the name to indicate the name is a path.

.Count Returns the total number of mounted volumes.

.Eject Ejects the specified volume, leaving its icon on the desktop. This is the same as
choosing Eject Disk from the Finder’s Special menu.

.Exists Returns 1 (True) if the specified volume is mounted, otherwise 0 (False).

If NOT Volume("Beavis").Exists
// Open an alias to mount the server volume
Open (FindFolder "amnu") & "Recent Servers:Beavis"
Type "myPassword"
■ 301

CHAPTER 8 ■ EASYSCRIPT REFERENCE

Volume object

30
SelectButton "OK"
End If

.Free Returns the number of free kilobytes (K) on the specified volume. Subtract .Free from
.Size to get the total number of used kilobytes.

Volume.Size and Volume.Free do not support volumes larger than 2 GB. For volumes
larger than 2 GB, .Size returns 2097138 (approximately 2 GB).

// Show a blue thermometer indicating the percentage of space used on the startup disk
Variable usedSpace percentUsed
usedSpace = Volume.Size – Volume.Free
percentUsed = (usedSpace * 100 / Volume.Size)
DrawIndicator percentUsed, 211

.Index Returns the corresponding index number for the volume when the volume is
specified by name. Volumes are indexed in the order they were mounted (1 for the
first volume mounted, 2 for the second, and so on).

.List Returns a list of names of all mounted volumes. Each name has a colon (:) at the end
to indicate the name is a path. Volumes in the list are in the order in which they were
mounted; the first volume in the list is always the startup disk.

// Unmount the volume chosen from the pop-up menu
Variable theChoice
theChoice = PopupMenu Volume.List
Volume(theChoice).Unmount

.Name Returns the name of a volume specified by number.

// Store the name of the startup disk in global variable HD
Variable Global HD
HD = Volume.Name

.Size Returns the total size of the specified volume in kilobytes (K). Divide the size by 1024
to get the size in megabytes.

Volume.Size and Volume.Free do not support volumes larger than 2 GB. For volumes
larger than 2 GB, .Size returns 2097138 (approximately 2 GB).

// Display a list box showing the sizes (in megabytes) of all mounted volumes
Variable volCount volList theVol sizeList X
volCount = Volume.Count
2 ■

CHAPTER 8 ■ EASYSCRIPT REFERENCE

Wait command
volList = Volume.List
For X = 1 To volCount

theVol = ListItems volList, X
sizeList = sizeList & theVol & " " & (Volume(theVol).Size / 1024) & " MB" & Return

End For
X = AskList sizeList, "Sizes of mounted volumes:"

.Unmount Unmounts the specified volume and removes its icon from the desktop. This is the
same as dragging the volume to the Trash or choosing Put Away from the Finder’s File
menu.

// Unmount the volume named “PowerBook” that’s mounted via file sharing
Volume(“PowerBook”).Unmount

Wait command
Syntax Wait expression

Description Stops script execution until expression evaluates to true (non-zero). Execution
continues with the statement following Wait after the expression becomes true.

You can continue using the computer while the script waits.

Examples // Waits until you click the mouse, then displays a message box
Wait IsMouseDown
Message "All done"

// Waits until you press any key
Wait IsKeyDown

// Waits until a window named “Welcome” appears or until 10 seconds are up, whichever is first
Variable startTicks timeoutSecs windowName
startTicks = Ticks
timeoutSecs = 10
windowName = "Welcome"
Wait NOT (((Ticks - startTicks) < (timeoutSecs * 60)) AND (NOT Window(windowName).Exists))

// Waits until the time is 12:15 PM, then plays a sound
Wait (Time 0) = "12:15 PM"
Sound "Quack"

See Also Pause command (page 263)
■ 303

CHAPTER 8 ■ EASYSCRIPT REFERENCE

WeekdayGregorian function

30
WeekdayGregorian function
Syntax WeekdayGregorian year, month, day

Description Returns the day of the week (1=Sunday, 2=Monday, ... 7=Saturday) for the
specified year, month, and day. Year should be four digits; 99 is not interpreted as
1999.

The DateTime.Weekday property returns the correct day of week only for dates
supported by the Mac OS date format (January 1, 1904 through February 6, 2040).
WeekdayGregorian returns the correct day of week for any date, either B.C. or A.D.

Examples Variable dayList day
dayList = "Sunday,Monday,Tuesday,Wednesday,Thursday,Friday,Saturday"
ListDelimiter = ","
day = ListItems dayList, (WeekdayGregorian 1999, 4, 8)
Message "April 8, 1999 is a " & day

Author Info WeekdayGregorian, part of Calendar Extension
Copyright © 1999 Jeff Jungblut. All rights reserved.

While, Next While, Exit While, End While
commands

Syntax While condition
statements
[Next While]
[Exit While]

End While

Description Executes all of the statements between While and End While while condition is true
(non-zero). When condition becomes false, execution continues with the statement
following End While. If condition is false the first time it’s tested, then the loop is
skipped.

You can use Next While to skip to the next iteration of the While loop, and you can
use Exit While to prematurely exit the loop and continue executing the statements
following End While.

Examples // Type 1 to 10 separated by commas
X = 1
4 ■

CHAPTER 8 ■ EASYSCRIPT REFERENCE

Window object
While X <= 10
Type X & ", "
X = X + 1

End While

// Type 1 to 10 separated by commas, skipping number 5
X = 1
While X <= 10

If X = 5
Next While

End If
Type X & ", "
X = X + 1

End While

See Also Repeat, Next Repeat, Exit Repeat, End Repeat commands (page 277); For, Next For,
Exit For, End For commands (page 219); Repeating statements while a condition is
true (page 106)

Window object
Description The Window object lets you get information about or manipulate open windows on

the screen. The specifier for a Window object is the name of the window as it appears
in the window’s title bar. If you don’t specify a window name, then the object refers to
the active (front) window. You can also specify a window by number; window 1 is the
active window.

You can use wildcard characters to match window names. ‘?’ matches a single
character and ‘*’ matches zero or more characters.

To work with windows in an inactive application, specify the process along with the
window.

Process(specifier).Window(specifier).Property

When you access a Window object as a property of a Process object, you can get any
window property and set most properties. You cannot set properties that require a
click on the window, such as sizing, zooming, windowshading. To set properties that
require a click, use Process(specifier).Front first to make the application active, then
change the window properties by accessing the Window object without the Process
specifier.
■ 305

CHAPTER 8 ■ EASYSCRIPT REFERENCE

Window object

30
.Collapsed Gets or sets the windowshade status of the specified window. If the window is
collapsed (shaded), the value is 1. When the window is expanded, the value is 0
(zero).

The .Collapsed property is only available in Mac OS 8.0 and later.

// Collapse or expand the active window.
Window.Collapsed = NOT Window.Collapsed

// Toggle the windowshade for all windows in the active application.
Variable X
For X = 1 To Window.Count

// If it's collapsed, expand it; if it's expanded, collapse it
Window(X).Collapsed = NOT Window(X).Collapsed

End For

.Count Returns the total number of open windows in the active application. Use
Window.Count as a shortcut for ListCount Window.List.

.Exists Returns True (1) if the specified window is open on the screen, otherwise False (0).
Use .Exists to determine if a window is open before performing some other action
that affects the window or its contents (such as moving the window or typing text into
it).

// If the window named "untitled" isn’t open, then open a new window
If NOT Window("untitled").Exists

SelectMenu "File", "New"
End If

.Front Brings the specified window to the front (makes it active). Use Window.Front to
switch windows from a script instead of using the Click command to click a window
and make it active.

.Front works as both a message and a property; that is, Window(2).Front is the same
as Window.Front = 2.

// Switch to the "Bookmarks" window if it’s not already active
If Window.Name <> "Bookmarks"

Window("Bookmarks").Front
End If

// Cycle through all open windows. Don’t try to make the Desktop active or Finder may hang.
If Window(Window.Count).Name <> "Desktop"
6 ■

CHAPTER 8 ■ EASYSCRIPT REFERENCE

Window object
Window.Front = Window.Count
Else

Window.Front = Window.Count - 1
End If

.Height Gets or sets the height of the active window. Use .Height to resize a window vertically.
The .Height property works only with the active window, so a window specifier is not
necessary.

// Resize the active window to 100 pixels tall
Window.Height = 100

.Index Returns the corresponding index number for the window when the window is
specified by name. Windows are indexed in front-to-back order (1 for the first
window, 2 for the second, and so on).

.Kind Returns an ID number identifying the kind of window specified. Applications that
have different types of windows (document windows, moveable dialog boxes, tool
bars, and so on) use a unique ID number for each style of window.

Use the .Kind property to determine which windows in Window.List are document
windows and which are other special types of windows. By evaluating the .Kind
property of each window in the list, you can create a new list that contains just the
desired windows.

The following table shows the .Kind values for standard window styles.

Value Window style

0 Document

1 Dialog box

2 Plain dialog box

3 Alternate dialog box (has a drop shadow)

4 Document with no size box

5 Moveable dialog box

8 Document with zoom box

12 Document with zoom box, no size box
■ 307

CHAPTER 8 ■ EASYSCRIPT REFERENCE

Window object

30
// Displays the .Kind value for any window chosen from the pop-up menu.
// The menu lists all windows, including documents, moveable dialog boxes, tool bars, etc.
Variable theChoice
theChoice = PopupMenu Window.List
If theChoice <> ""

Message Window(theChoice).Kind
End If

// Show a pop-up menu of document windows and floating palettes in QuarkXPress.
// Documents appear at the top of the menu, palettes are at the bottom.
// Quark’s document windows have a .Kind value of 8 and palette windows all
// have a .Kind value greater than 16.
Variable WinList, theChoice, specialList, docList, theWindow, X
WinList = Window.List
For X = 1 To ListCount WinList

theWindow = ListItems WinList, X
If Window(theWindow).Kind > 16

specialList = specialList & theWindow & Return
Else If Window(theWindow).Kind = 8

docList = docList & theWindow & Return
End If

End For
WinList = (ListSort docList) & "-" & Return & (ListSort specialList)
theChoice = PopupMenu WinList
If theChoice <> ""

Window(theChoice).Front
End If

Note For Macintosh programmers: The .Kind value is a combination of the window’s
variant and the resource ID of the window’s WDEF. This is the same number that the
application passes to the Macintosh Toolbox call “NewWindow” when it creates the
window. Standard windows have a value from 0 to 16. Custom windows have a
number that is 16 * WDEF Resource ID + window variant (a number greater than
16).

.Left Gets or sets the window’s left edge on the screen. Use .Left to move a window
horizontally.

// Move the window to the left edge of the screen
Window.Left = 0

16 Desk Accessory (rounded) window

Value Window style
8 ■

CHAPTER 8 ■ EASYSCRIPT REFERENCE

Window object
// Move the window to the right edge of the screen.
Window.Left = Screen.Width – Window.Width

.List Returns a list of open windows in the active application. The window list includes
regular windows; moveable dialog boxes; and the application’s own special windows
such as tool bars or floating palettes, if any (not OneClick palettes). Special windows
that don’t have a name (such as tool bars in some applications) aren’t included in the
window list.

// Display a pop-up menu of all open windows and switch to the window chosen from the menu
Variable theChoice
theChoice = PopupMenu Window.List
If theChoice <> ""

Window.Front = theChoice
End If

.Location Sets the window’s horizontal and vertical location on the screen. This property
requires two parameters (X and Y coordinates) when specifying the window’s
location. The .Location property is write-only.

// Move the window named "Mac HD" to the left edge of the screen and 20 pixels down.
// (The menu bar is 20 pixels tall.)
Window("Mac HD").Location = 0, 20

.Name Returns the name of the window specified by index number. When used without a
specifier, Window.Name returns the name of the active window.

To bring an inactive window to the front, use Window.Front.

Note Applications that have their own floating palettes or tool bars (such as Adobe
Photoshop, Microsoft Word and Excel) often consider one of the floating palettes to
be the active window, not the active document window. (This applies only to an
application’s built-in palettes, not OneClick palettes.) For example, if the active
window is a Photoshop document, Window.Name usually returns “Tools” as the active
window (the Photoshop tool palette). You can use Window.Kind to determine which
windows are real document windows and which are tool bars or other kinds of
windows.

.Size Changes the active window’s size. This property requires two parameters (width and
height) when specifying the size. The .Size property works only with the active
■ 309

CHAPTER 8 ■ EASYSCRIPT REFERENCE

Window object

31
window, so a window specifier is not necessary. This property works only if the
window has a resize box.

The .Size property is write-only.

// Resize the window to 540 pixels wide by 400 pixels tall
Window.Size = 540, 400

.TitleBar Returns the height in pixels of the specified window’s title bar.

.Top Gets or sets the window’s top edge on the screen. Use .Top to move a window
vertically .

// Move the active window to just below the menu bar
Window.Top= 20

// Cascade all open windows
Variable theWindow, winList, winCount, X
winList = Window.List
winCount = Window.Count
For X = 1 to winCount

theWindow = ListItems winList, X
Window(theWindow).Top = (20 * X) + 20
Window(theWindow).Left = 20 * X

End For

.Update Forces the application to redraw the contents of the specified window.

.Visible Returns True (1) if the specified window is visible (showing on the screen) or False (0)
if it’s hidden. Setting .Visible to zero (0) hides the window; setting .Visible to 1 shows
the window.

Making a window invisible does not close the window, it just hides it. To make an
invisible window visible, you must specify it by name and not number. Invisible
windows are not seen when specifying by number.

Caution Be careful when changing a window’s .Visible property—some applications
may not work correctly if you make their windows invisible.
0 ■

CHAPTER 8 ■ EASYSCRIPT REFERENCE

Window object
An alternative to hiding windows with Window.Visible=0 is to move the window off
screen. It accomplishes the same thing as making it invisible, but you can still interact
with the window by sending clicks and keystrokes to it. This is basically what Dialogs
= 0 does.

One drawback is that you need to remember the original position of the window to
restore it. A solution is to add a specific constant to move it off screen (say 8000, for
example), then subtract that same constant when moving the window back on screen.

.Width Gets or sets the width of the active window. Use .Width to resize a window
horizontally. The .Width property works only with the active window, so a window
specifier is not necessary.

// Resize the active window to 300 pixels wide
Window.Width = 300

.Zoom Gets or sets the zoom state of the specified window. When .Zoom = 1, the window is
zoomed out to its full size; when .Zoom = 0, the window is not zoomed (the
window’s current size is different than its zoomed size). Setting .Zoom without a
parameter toggles the window’s zoom state.

The .Zoom property works only with the active window, so a window specifier is not
necessary.

// Zoom the active window to its full size
Window.Zoom = 1

// Toggle the zoom state of the active window (same as clicking in the window’s zoom box)
Window.Zoom

// Zoom all unzoomed windows
Variable winList, theWindow, X
winList = Window.List
For X = 1 to ListCount winList

theWindow = ListItems winList, X
Window(theWindow).Front
If NOT Window(theWindow).Zoom

Window(theWindow).Zoom = 1
End If

End For
■ 311

CHAPTER 8 ■ EASYSCRIPT REFERENCE

With command

31
With command
Syntax With object-specifier

.property = value
End With

Description Lets you omit the object specifier when getting or setting the values of many of the
same object’s properties. Use the With command to make a script more readable and
save yourself some typing.

When you specify a property without an object, the object is assumed to be the same
object specified in the With statement. You can access other objects and properties
within the With statement as long as you specify the object you want to access.

Note Don’t use a For, Repeat, or While loop inside a With statement to iterate
through several objects or properties; unpredictable results may occur. You can put
the With statement inside the For, Repeat, or While loop to get the desired results.

Examples With Button("Program Launcher")
.Width = 40
.Height = 22
.Color = 43 // light purple
.Text = "Launcher"
Palette.Name = .Name // sets the palette name equal to the button name
.Mode = 0 // sets the button appearance to Normal

End With

// Clear the text, color, and keyboard shortcut for every button on the palette
Variable X
For X = 1 To Button.Count

With Button(X)
.Text = ""
.KeyShortCut = ""
.Color = 0

End With
End For

See Also Objects (page 109)
2 ■

Appendix A

EasyScript Summary
The following tables summarize all of EasyScript’s built-in and external commands,
functions, and system variables. For more detailed information about a specific
command and how to use it, see Chapter 8, “EasyScript Reference” or see the online
help available in the Script Editor.

. To get help for an EasyScript keyword

1 Open the OneClick Editor window.

2 Click the Script tab.

3 Click the button to display the keyword list.

4 Select a keyword from the list.

5 Click the button to display help for the selected keyword.

Note Keywords marked with an asterisk (*) are OneClick extensions (external
commands, functions, or system variables). OneClick extensions are stored in the
Extensions folder inside the OneClick folder (in Preferences). If the OneClick
extension files are not installed, then the extra keywords they provide are not
available to use in scripts.
■ 313

APPENDIX A ■ EASYSCRIPT SUMMARY

31
Command What it does

AppleScript command Indicates that the following lines are AppleScript statements.

Beep command Plays the Macintosh system beep.

Call command Calls another script or handler as a subroutine of the current script.

Click command Simulates clicking coordinates on the screen or within a window or dialog box.

CloseWindow command Closes the active window.

ConvertClip command Forces conversion of the Clipboard contents to plain text.

Dial command * Dials a phone number through the speaker or a modem.

DragButton command Drags the specified text from a button.

DrawIndicator command Draws a progress bar or pie indicator.

Editor command Opens the OneClick Editor window and displays the specified tab.

Else Indicates statements to execute if a logical expression evaluates to False.

End Indicates the end of a block of statements.

Exit Stops running the current script and returns to the calling script, if any.

FinderCopy command Copies files to the specified folder.

FinderMove command Moves files to the specified folder.

For Repeats one or more statements while incrementing the specified variable.

GetWindowText command Captures text from the specified window and puts it in a variable.

If Indicates statements to execute if a logical expression evaluates to True.

KeyPress command Simulates a key press of the specified key.

LoadExtensions command Loads or reloads OneClick extensions from the specified file.

Message command Displays a message in a dialog box with an OK button.

Next Forces the next iteration of a For, Repeat, or While loop.

Notify command Displays a message in a notification dialog box or floating window.

On Specifies the start of a handler.

Open command Opens the specified application, document, or folder.

PaletteMenu command Displays the OneClick menu as a pop-up menu.
4 ■

APPENDIX A ■ EASYSCRIPT SUMMARY
Pause command Pauses for the specified time interval, then resumes.

PopupPalette command Displays another palette as a pop-up palette.

QuicKey command * Runs the specified QuicKey macro. Requires QuicKeys™ from CE Software.

Repeat Repeats one or more statements the specified number of times.

Schedule command Specifies when or how often the script’s Scheduled handler should run.

Scroll command Simulates clicks in the active window’s scroll bars.

SelectButton command Clicks a named button or checkbox within a window or dialog box.

SelectMenu command Simulates choosing a command from a pull-down menu.

SelectPopUp command Simulates choosing a command from a pop-up menu in a window or dialog box.

Set command Assigns a value to a variable.

Sound command Plays the specified sound.

Speak command * Speaks the specified text.

Type command Types the specified text or command keys.

Variable command Declares variable names for use in a script.

Wait command Waits until the specified condition evaluates to True, then resumes.

While Repeats one or more statements while the specified condition is true.

With command Specifies the object whose properties are referenced in the following statements.

// Indicates that the rest of the line is a comment.

Function What it does

Absolute function Returns the absolute value of a number.

Alias function Returns an alias for the specified file as a string.

AskButton function Displays an alert box and returns a value indicating which button was used to dismiss the
alert.

AskFile function Displays a directory dialog box and returns the full path of the file or folder selected.

AskKey function Prompts you to press a key combination and returns the keystroke in text format.

Command What it does
■ 315

APPENDIX A ■ EASYSCRIPT SUMMARY

31
AskList function Displays a list box and returns the selected item.

AskShortcut function Reserved for WestCode use.

AskText function Displays a dialog box with a text field and returns the text typed in the field.

Char function Returns the character indicated by the ASCII code parameter.

Code function Returns the ASCII code of the string parameter’s first character.

Find function Returns the character position of one text string within another.

FindApp function Returns the path to the application with the specified creator code.

FindFolder function Returns the full path of the specified folder.

Gestalt function Returns Gestalt information for the specified selector.

GetDragAndDrop function Returns a list of paths of dropped files or returns the text in a dropped text clipping.

GetResources function Returns a list of all the resources of the specified type.

Implemented function Returns True if the specified OneClick keyword is available.

Length function Returns the number of characters in a text value.

ListCount function Returns the number of items in a list.

ListDelete function Deletes items from a list and returns the new list.

ListFind function Returns the position (index) of an item in a list.

ListInsert function Inserts new items into a list and returns the new list.

ListItems function Returns a subset of items from the specified list.

ListSort function Sorts the specified list and returns the sorted list.

ListSum function Returns the sum of all numbers in a list.

Lower function Returns a text value as all lowercase letters.

MakeNumber function Converts a text value to a number and returns the result.

MakeText function Converts a number to a text value and returns the result.

MenuNumber function Returns the item number of the last item selected with the PopupMenu function.

OldListCount function Obsolete function. Use ListCount instead.

OldListItems function Obsolete function. Use ListItems instead.

Function What it does
6 ■

APPENDIX A ■ EASYSCRIPT SUMMARY
OpenFileList function Returns a list containing the paths of all open files.

PopupFiles function Displays a hierarchical pop-up menu of files and folders and returns the path of the
chosen item.

PopupFont function * Displays a pop-up menu of all the characters in a font and returns the chosen character.

PopupMenu function Displays a list as a pop-up menu and returns the chosen item.

Proper function Returns a string with the first letter of each word capitalized.

Random function Returns a random number between 1 and the specified value.

Replace function Replaces occurrences of one string within another.

Return function Returns the carriage return character. Use with Type to press the Return key from a
script.

SubString function Returns a portion of a string.

Tab function Returns the tab character. Use with Type to press the Tab key from a script.

Trim function Returns text with extra spaces removed.

Upper function Returns a text value as all uppercase letters.

Variable What it does

ASResult system variable Returns the result of the last AppleScript statement.

BeepLevel system variable Returns or sets the system beep volume level.

Clipboard system variable Returns the contents of the Clipboard.

CommandKey system variable True when the Command key is pressed, otherwise False.

ControlKey system variable True when the Control key is pressed, otherwise False.

Cursor system variable Returns the resource ID number of the current cursor.

Dialogs system variable Enables or disables display of dialog boxes while a script runs.

DialogText system variable Gets or sets the text of the active text box in a dialog box.

Directory system variable Returns or sets the current folder for Open and Save dialog boxes.

EditorFont system variable Gets or sets the font displayed in the Script Editor.

EditorSize system variable Gets or sets the font size displayed in the Script Editor.

Function What it does
■ 317

APPENDIX A ■ EASYSCRIPT SUMMARY

31
Error system variable Returns the error code of the most recent script error.

IgnoreClicks system variable Causes the system to ignore all mouse activity except clicks on OneClick palettes.

IsKeyDown system variable Returns True when a key is currently pressed, otherwise False.

IsMouseDown system variable True when the mouse button is clicked or held down, otherwise False

ListDelimiter system variable Returns or sets the delimiter character to use with lists.

OptionKey system variable True when the Option key is pressed, otherwise False.

PopupMenuFont system variable Gets or sets the font used in all OneClick pop-up menus.

PopupMenuSize system variable Gets or sets the font size used in all OneClick pop-up menus.

ScheduleType system variable Returns a value indicating why a Scheduled handler was called.

ScriptInterrupts system variable Stops or restarts the script’s ability to be interrupted during execution.

ShiftKey system variable True when the Shift key is pressed, otherwise False.

SoundLevel system variable Returns the current speaker volume level (0—7) or sets the volume to a new level.

SystemFolder system variable Returns the path to the System folder on the startup disk.

Ticks system variable Returns the number of ticks (1/60th of a second) since the computer was started.

Version system variable Returns the OneClick version number as an integer.

Object What it does

Button object Accesses or manipulates the properties of OneClick buttons.

DialogButton object Accesses the properties of buttons in a window or dialog box.

File object Accesses or manipulates the properties or contents of files and folders.

Menu object Accesses the properties of menus or menu items.

Palette object Accesses or manipulates the properties of OneClick palettes.

Process object Accesses or manipulates the properties of running applications.

Screen object Accesses or manipulates the properties of monitors.

Volume object Accesses or manipulates the properties of mounted volumes (disks).

Window object Accesses or manipulates the properties of windows.

Variable What it does
8 ■

APPENDIX A ■ EASYSCRIPT SUMMARY
Handler What it does

DragAndDrop handler Indicates statements to execute when text or a Finder object is dropped on the button.

DrawButton handler Indicates statements to execute whenever the button is drawn or redrawn.

MouseDown handler Indicates statements to execute when the button is clicked, before the mouse button is
released.

MouseUp handler Indicates statements to execute when the button is clicked, after the mouse button is
released.

Scheduled handler Indicates statements to execute upon a Schedule event.

Startup handler Indicates statements to execute when the application starts up.

Operator What it does

AND Performs a logical AND.

NOT Performs a logical NOT.

OR Performs a logical OR.

" Encloses a literal text string.

’ Encloses a literal text string. Use ’ instead of " if the string already contains the " character.

& Joins the text string on the left with the text string on the right.

() Encloses expressions to be evaluated first.

* Multiplies the number on the left by the number on the right.

+ Adds the number on the left to the number on the right.

– Subtracts the number on the right from the number on the left.

/ Divides the number on the left by the number on the right.

< Evaluates to True if the expression on the right is greater than the expression on the left.

<= Evaluates to True if the expression on the right is greater than or equal to the expression on the left.

<> Evaluates to True if the expression on the right and the expression on the left are not equivalent.

= Evaluates to True if the expression on the right and the expression on the left are equivalent.

> Evaluates to True if the expression on the right is less than the expression on the left.

>= Evaluates to True if the expression on the right is less than or equal to the expression on the left.
■ 319

APPENDIX A ■ EASYSCRIPT SUMMARY

32
0 ■

Appendix B

Integration with AppleScript
Why use AppleScript?

AppleScript is a system-level scripting language that’s part of the Mac OS. AppleScript
lets you control applications that are designed to support scripting (called
AppleScript-aware applications). Not all applications support AppleScript, but newer
versions of most major commercial applications do support it to some degree.

The primary reason to use AppleScript is the model in which it works. Whereas
EasyScript lets you control an application by driving its user interface (clicking
buttons and selecting menu items), AppleScript lets you control an application by
using a scripting vocabulary that’s built in to the application. For example, in
EasyScript, you could sort a FileMaker Pro database with the following script:

SelectPopUp 27, 11, "List" // Choose the List layout from the Layout pop-up menu
SelectMenu "Select", "Sort…" // Choose the Sort command from the Select menu
SelectButton "Clear All" // Remove all items from the Sort Order list box
Type Down Down // Select the second item (Last Name) in the Field list box
SelectButton "» Move »" // Move Last Name from the Field list to the Sort Order list
SelectButton "Sort" // Click the Sort button

The script performs its work entirely by clicking options, typing, and choosing menu
commands. AppleScript, by comparison, gets the same result by using some scripting
keywords that are built into FileMaker Pro:

tell application "FileMaker Pro"
Show Layout "List" of Document "Phone Book"
Sort Layout "List" By Field "Last Name"

end tell

The phrases “Show Layout” and “Sort Layout By Field” are part of FileMaker Pro’s
built-in AppleScript vocabulary; they aren’t part of AppleScript. Each AppleScript-
■ 321

APPENDIX B ■ INTEGRATION WITH APPLESCRIPT

Integrating OneClick and AppleScript

32
aware application comes with its own vocabulary that it understands. (Most
AppleScript-aware applications also support a common or “core” vocabulary.)

An application’s vocabulary is usually specific to the purpose of the application, for
example:

■ WordPerfect’s vocabulary lets you manipulate words, paragraphs, pages, and text
formatting in word processing documents.

■ FileMaker Pro’s vocabulary lets you manipulate fields, records, and layouts within
database documents.

■ Microsoft Excel’s vocabulary lets you manipulate cells, rows, columns, tables, and
charts in spreadsheet documents.

AppleScript software is included with Mac OS 7.5 and later.

Note AppleScript knowledge is not required to use OneClick or write EasyScript
scripts, and the OneClick control panel works just fine without AppleScript installed.
However, some third-party OneClick palettes may require AppleScript for full
functionality.

Integrating OneClick and AppleScript

By leveraging the unique features of both scripting languages, you can achieve greater
scripting control over the applications you use. You can use OneClick buttons to run
either EasyScript or AppleScript scripts (or a combination of the two), and you can
share data between the two languages by the use of global variables.

■ Use OneClick to drive the user interface of applications and to control
applications that don’t support AppleScript.

■ Use AppleScript to manipulate information in documents whose applications are
AppleScript-aware.
2 ■

APPENDIX B ■ INTEGRATION WITH APPLESCRIPT

Integrating OneClick and AppleScript
Launching compiled AppleScript scripts

An EasyScript script can launch an AppleScript script that is saved as either a compiled
script or as an “applet” (a compiled script that’s saved as a double-clickable
application). Use the AppleScript command to run the script.

// Run the "Start File Sharing" script included with Mac OS 8.
AppleScript "Mac HD:Apple Extras:AppleScript:Automated Tasks:Start File Sharing"

If you launch an AppleScript “droplet” (a script application that expects you to drop
something on its icon), the AppleScript script will usually use the current selection as
the dropped item (just as if the selection was dropped on the icon). You cannot pass
information from EasyScript’s GetDragAndDrop function to an AppleScript droplet.

Embedding AppleScript code in an EasyScript script

The EasyScript language lets you extend its power by including scripts written in
AppleScript directly in your EasyScript scripts. This AppleScript embedding capability
allows your EasyScript scripts to contain a mixture of EasyScript and AppleScript code.

To embed AppleScript code within an EasyScript script, type or paste the AppleScript
statements between AppleScript and End AppleScript commands.

// Eject removable disks from all drives.
// This script requires the Scriptable Finder in Mac OS 7.5.
AppleScript

tell application "Finder"
put away (every disk whose ejectable is true)

end tell
End AppleScript

When you save or check the syntax of a script that contains embedded AppleScript
code, OneClick tells the AppleScript extension to compile the AppleScript portions of
the script. If the AppleScript compiler needs to report an error message, such as a
syntax error in an AppleScript statement, the message appears in the status line in the
Script Editor (where EasyScript compiler messages normally appear).
■ 323

APPENDIX B ■ INTEGRATION WITH APPLESCRIPT

Integrating OneClick and AppleScript

32
Accessing the AppleScript result variable

After each AppleScript statement executes, the special AppleScript variable “result”
gets set to the result of the statement. Use EasyScript’s ASResult system variable to
access the AppleScript result variable. ASResult always returns the AppleScript result
variable as a string, no matter what the original data type was in AppleScript.

Following is a sample script that performs a calculation and returns the floating-point
(decimal) result as a string. OneClick displays the result in a message box.

// Displays a OneClick message box containing the string "1.4"
AppleScript

get (3 + 4) / 5
End AppleScript
Message ASResult

Accessing OneClick variables from an AppleScript script

The OneClick Scripting Addition file (included with OneClick) lets you get and set the
values of EasyScript global variables from within an AppleScript script. You can access
only global variables (not local or static variables) from within AppleScript. Use the
following syntax in your AppleScript scripts:

get OneClick variable "global-variable-name"
set OneClick variable "global-variable-name" to value

Note that the OneClick variable name is a string enclosed in quotes. To access an
EasyScript global variable and use it in AppleScript, the easiest way to do so is to first
get its value, then copy the value to an AppleScript variable of the same name.

The following is an example that passes the pathname of a dropped Finder icon to
AppleScript. The AppleScript script retrieves the pathname from the global variable
theFileToSend; the script then tells Anarchie (an Internet FTP client program) to send
the specified file to an FTP (File Transfer Protocol) server on the Internet. The end
result is that the file dropped on the OneClick button is sent to the FTP server.
4 ■

APPENDIX B ■ INTEGRATION WITH APPLESCRIPT

Integrating OneClick and AppleScript
On DragAndDrop
Variable Global theFileToSend
// Get the pathname of the first icon dropped on the button.
theFileToSend = GetDragAndDrop 1
// Tell Anarchie to upload the specified file to the FTP server.
AppleScript

tell application "Anarchie"
activate
-- Get the value of theFileToSend and store it in an
-- AppleScript variable of the same name.
get OneClick variable "theFileToSend"
copy result to theFileToSend
-- Transfer the file to the "incoming" directory on the FTP server.
store file theFileToSend host "crash.cts.com" path "incoming" ¬

user "jeffmj" password "myPass" with binary
end tell

End AppleScript
End DragAndDrop

Calling a OneClick script from an AppleScript script

The OneClick Scripting Addition file lets you call the script of a OneClick button as a
subroutine in AppleScript. The technique is similar to the way you can use the Call
command in an EasyScript script. Use the following syntax to call a script.

call OneClick button "button-name" on palette "palette-name"

Button-name and palette-name are strings enclosed in quotes. Note that unlike
EasyScript’s Call command, a palette name is required when you call a OneClick
button from within AppleScript.

Following is a sample script that calls a OneClick button. The OneClick button opens
the folder named Utilities on the startup disk; the AppleScript statements then zoom
and position the folder’s open window.

tell application "Finder"
activate
call OneClick button "OpenUtilitiesFolder" on palette "Launcher"
set zoomed of window of folder "Utilities" of startup disk to true
set position of window of folder "Utilities" of startup disk to {100, 85}

end tell
■ 325

APPENDIX B ■ INTEGRATION WITH APPLESCRIPT

AppleScript resources

32
Determining if AppleScript is installed

If you write scripts for people to use on other Macs, it’s a good idea to include code in
your scripts that lets you determine if AppleScript is installed or not. By doing so, you
can alert the user that AppleScript needs to be present for the script to run correctly.
Use the Gestalt function with the “ascr” selector to find out if AppleScript is available.

If NOT Gestalt "ascr", 0
Message "This button requires AppleScript, but AppleScript is not installed."
Exit

End If
AppleScript SystemFolder & "Scripts:Universal Scripts:Start File Sharing"

Gestalt “ascr”, 0 returns 1 (True) if AppleScript is available, otherwise 0 (False).

AppleScript resources

Because AppleScript is a very different language, describing its syntax and use is
beyond the scope of this manual. There are a number of good books and other
resources for AppleScript, including the following:

■ Danny Goodman’s AppleScript Handbook, Second Edition, published by
Random House. This book covers the basics of writing AppleScript scripts, and
also includes intermediate and advanced topics. Several sections cover how to
script many popular business applications. The book comes with a CD-ROM
containing all kinds of goodies: AppleScript and sample scripts, scripting
additions, some scriptable applications, documentation, and more.

■ AppleScript for Dummies, published by IDG Books Worldwide. Designed as a
reference for the important features of AppleScript including AppleScript syntax,
the AppleScript tools, Script Editor, Scriptable Text Editor, and the Scriptable
Finder, this book covers commands associated with the Scriptable Finder, as well
as the best of the available freeware, shareware, and commercial scripting
additions.

■ AppleScript for the Internet: Visual QuickStart Guide, published by Peachpit
Press. This guide covers AppleScript language basics and is geared towards
scripters who want to automate Internet-related tasks and who want to write CGI
(Common Gateway Interface) scripts for Mac-hosted web servers.

■ AppleScript Language Guide for AppleScript 1.3.7, published by Apple
Computer, Inc. This book is the definitive description of the AppleScript scripting
6 ■

APPENDIX B ■ INTEGRATION WITH APPLESCRIPT

AppleScript resources
language and is an essential reference for anyone using AppleScript to modify
existing scripts or write new ones. It also contains useful information for
programmers who are working on scriptable applications or complex scripts.
The book begins with an introduction to scripting and an overview of
AppleScript's main features. Most of the book consists of detailed definitions of
AppleScript terminology and syntax. An online version of this book is available:
http://developer.apple.com/techpubs/macos8/pdf/AppleScriptLanguageGuide.pdf

■ AppleScript Finder Guide: English Dialect, published by Apple Computer, Inc.
This is Apple’s reference manual for the Scriptable Finder included in Mac OS 7.5
and later. The manual assumes you already know AppleScript. It’s essential for
people who want to write advanced scripts that control the Finder and
manipulate Finder objects. An online version of this book is available:
http://developer.apple.com/techpubs/mac/pdf/AS_Finder_Guide.pdf

■ AppleScript Scripting Additions Guide: English Dialect, published by Apple
Computer, Inc. This book describes the scripting additions that accompany the
English dialect of the AppleScript language. Scripting additions are files that
extend AppleScript’s capabilities by providing additional commands or coercions
for use in scripts, analogous to OneClick extensions for EasyScript. An online
version of this book is available:
http://developer.apple.com/techpubs/mac/pdf/Scripting_Additions.pdf

■ http://www.apple.com/applescript/ Apple’s web site includes links to
AppleScript online resources, tutorials, and documentation, including HTML and
Acrobat PDF versions of the AppleScript Language Guide, Finder Guide, and
Scripting Additions Guide.
■ 327

APPENDIX B ■ INTEGRATION WITH APPLESCRIPT

AppleScript resources

32
8 ■

ONECLICK AUTHORING GUIDE ■ INDEX
Index

A
Absolute function 149
accessing multiple properties 312
adding

buttons 165
buttons from libraries to palettes 22
buttons to libraries 24
buttons to palettes 46
list items 237
new libraries 24
new palettes 30
palettes 259

alert boxes
creating 152, 156, 244
preventing display 190

alert sound 157
volume 158

aligning
button text 54, 169
buttons on palettes 48
icons 54, 163

appearance (of buttons) 165
appearance of buttons 54
Apple Events 273
Apple Menu Items folder 216
AppleScript 78, 150, 321

determining if installed 220, 326
embedding scripts 150, 323
integration with EasyScript 322
resources 326
result variable 324
result variable (AppleScript) 157
running compiled scripts 150, 323

AppleScript command 150
AppleScript Error (error message) 78
applications

activating 271
counting 270
determining creator code 270

determining existence 270
determining file type 272
determining folder 271
determining free memory 271
determining front application 271
hiding 274
name 272
opening 253
quitting 272
retrieving process list 272
searching for icons in 84
See also processes
showing 274

application-specific palettes 30
importing 41

arithmetic operators 99
arranging

buttons in libraries 26
buttons on palettes 48

ASCII code 176
AskButton function 152
AskFile function 152
AskList function 154
AskText function 156
ASResult system variable 157
AT command (modem) 186
automatic execution 136
automatic execution on startup 136

B
Balloon Help 162

editing in Button Editor 51
editing in Button Library 26

Beep command 157
BeepLevel system variable 158
black-and-white icons 82
Border property 159
border style 53
branching 102, 228
bucket tool 81
Button Editor

aligning text or icon 54
■ 329

ONECLICK AUTHORING GUIDE ■ INDEX

33
Balloon Help 51
button appearance 54
button border style 53
button color 52
button name 52
button text 48
button visibility 54
changing defaults 54
choosing icon 51
creating buttons 46
introduced 45
moving/aligning buttons 48
opening 45
resizing buttons 47
selecting buttons 46
shortcuts 46, 49
transparent buttons 53
visual properties 52

Button Library
adding buttons to libraries 24
copying buttons to palettes 22
copying scripts to buttons 22
creating new libaries 24
deleting buttons from libraries 27
deleting libraries 27
editing Balloon Help messages 26
introduced 21
opening 22
opening libraries 26
renaming libraries 27
searching for buttons 23

Button object 158–170
Button Palettes folder 43
button text

aligning 54
editing 48
formatting 48

buttons
adding to libraries 24
aligning 48
aligning icons 163
aligning text 169
appearance 54

as pop-up menus 124
border style 53
borders 159
choosing icon 51
clicking (in a dialog box) 287
color 52, 159
copying 55
copying from libraries to palettes 22
counting 160
creating 46, 165
creating in Icon Search 86
creating launch buttons with PaletteDrop 133
default settings 54
deleting 160
deleting from libraries 27
deleting from palettes 55
determining existence 161
dragging text from buttons 192
duplicating 55
editing Balloon Help message 51
height 47, 161
help message 162
icon 162
mode/appearance 165
moving on palettes 48
name 165
position 164, 170
rearranging in libraries 26
renaming 52
resizing 47
restoring deleted 56
retrieving button list 164
searching in Button Library 23
See also DialogButton object
selecting 46
shortcuts 49
size 161, 168, 170
spacing on palettes 36
text colors 169
text font 169
text label 168
text size 170
text styles 170
0 ■

ONECLICK AUTHORING GUIDE ■ INDEX
transparency 53
updating 170
visibility 54, 170
width 47, 170

C
Call command 128, 171
calling scripts 128
calling scripts from AppleScript 325
Cannot use a function as a command (error message) 76
carriage return character 278
characters

ASCII code 176
changing to lowercase 238
changing to proper case 275
changing to uppercase 299
pop-up menu of 265
Return character 278
Tab character 295

Check keyword
SelectButton command 287
SelectMenu command 288

Checked property
DialogButton object 188
Menu object 241

choosing
buttons to edit 46
icons to edit 79
menu items 288
palettes to edit 31
pop-up menu items 290

circle tool 81
Click command 172
click parameter 71
clicking 172

checkboxes 287
dialog box buttons 287
scroll bars 286

Clipboard
ConvertClip command 127, 179
converting contents to public format 127, 179
retrieving contents 125, 174

setting contents 125, 174
storing in static variables 126

Clipboard system variable 174
clippings, text 132
CloseWindow command 176
Code function 176
Color property

Button object 159
Palette object 256
Screen object 283

colors
button text 169
buttons 159
choosing button 52
choosing custom 33
choosing palette 32
designing color icons 82
Icon Editor draw color 80
Icon Editor erase color 80
palettes 256
selecting with dropper tool 81

command keys
typing 298

Command keyword
Click command 172
SelectButton command 287
Type command 298

CommandKey system variable 177
commands

defined 91
comments, defined 93
compiled AppleScript scripts 150
compiler

error messages 76
compiling scripts 64
conditional 228
conditional execution 102
conditional statements 228
ContextualMenu handler 178
Control keyword

Click command 172
SelectButton command 287
Type command 298
■ 331

ONECLICK AUTHORING GUIDE ■ INDEX

33
Control Panels folder 216
control statements 102
Control Strip Modules folder 216
ControlKey system variable 179
ConvertClip command 127, 179
converting text to number 238
coordinates 71

clicking 172
dragging 172

copying
buttons 165
buttons between palettes 55
buttons from libraries to palettes 22
buttons from palettes to libraries 24
buttons on palettes 55
files 214
icons in Icon Editor 82
palettes 42, 259
scripts from buttons 22

Count property
Button object 160
DialogButton object 188
Menu object 241
Palette object 256
Process object 270
Screen object 283
Volume object 301
Window object 306

counting
buttons 160
characters in text 232
list items 232, 251
palettes 256
processes 270
screens 283
volumes 301
windows 306

creating
buttons 46, 165
folders 205
launch buttons 133
libraries 24
palettes 30, 259

text files 205
creator code

files 200
processes 270

Creator property
File object 200
Process object 270

cursor parameter 72
Cursor system variable 180
custom colors 33

D
date parameter 72
DateSerial property 182
DateString property 182
DateTime object 181–186
Day property 184
debugging 139
decision-making 228
default directory 191
default settings

buttons 54
palettes 38

defined 118
Delete message

Button object 160
Palette object 256

deleting
buttons 160
buttons from libraries 27
buttons from palettes 55
libraries 27
palettes 38, 256
patterns (from palettes) 35
pictures (from palettes) 35
restoring deleted buttons 56

delimiter 234
Depth property 284
Desktop Folder 216
desktop pattern, as palette background 34
diagrams

Button Editor 45
2 ■

ONECLICK AUTHORING GUIDE ■ INDEX
Button Library 21
Icon Editor 79
Icon Search 84
Palette Editor 29

Dial command 186
dialog box buttons 287
dialog boxes

creating 152, 154, 156, 244
preventing display 190

DialogButton object 187–189
Dialogs system variable 190
directories

creating 205
finding system folders 216
retrieving contents list 203
setting default directory 191

directory dialog boxes
creating 152

Directory system variable 191
disks. See volumes
dismounting volumes 303
displaying

directory dialogs 152
list boxes 154
messages 152, 156, 244

Down keyword 286
Drag and Drop 131, 133, 192

determining if installed 220
dragging text from buttons 192
retrieving dropped items or text 221
text clippings 132

Drag message
Palette object 256

DragAndDrop handler 131, 192
DragButton command 192
dragging 172
dragging buttons 48
dragging palettes 256
draw color, Icon Editor 80
DrawButton handler 193
DrawIndicator command 194
drawing indicators (thermometers) 194
dropper tool 81

duplicating
buttons 55, 165
palettes 42, 259

E
editing

button text 48
icons 79
pixels in icons 80, 81

editing scripts 58, 62
efficiency of scheduled scripts 138
Eject message 301
ejecting volumes 301
Else command 102, 228
Else If command 102, 228
embedding AppleScript 150
Enabled property

DialogButton object 188
Menu object 241

End
End AppleScript command 150
End For command 105, 219
End If command 102, 228
End Repeat command 105, 277
End While command 106, 304
End With command 312

erase color, Icon Editor 80
eraser tool 81
error messages 64

Script Editor 76
Error system variable 142, 196
errors, run-time 142
Exists property

Button object 161
DialogButton object 188
File object 201
Menu object 242
Palette object 257
Process object 270
Screen object 284
Volume object 301
Window object 306
■ 333

ONECLICK AUTHORING GUIDE ■ INDEX

33
Exit
Exit command 109, 198
Exit For command 219
Exit Repeat command 277
Exit While command 304

exiting a script 109
Expected "End If," "End For," etc. (error message) 77
exporting palettes 40
expressions, defined 99
Extensions folder 216

F
file dialog boxes, creating 152
File object 199–206
file paths 73, 121
file type parameter 74
files

copying 214
creating 205
determining creator code 200
determining existence 201
determining type code 202
hierarchical pop-up menu 264
moving 215
opening 253
reading text from 205
searching for icons in 84
setting creator code 200
setting type code 202
writing text to 205

fill tool 81
Find function 212
Finder 214, 215
FinderCopy command 214
FinderMove command 215
FindFolder function 216
Fit To Buttons 35
floating-point numbers 90, 99
Folder property 271
folders

Button Palettes folder 43
determining existence 201

finding System Folder 295
finding system folders 216
hierarchical pop-up menu 264
opening 253
retrieving contents list 203
running applications 271
searching for icons in 84
setting default directory 191

fonts 131
button text 169
pop-up character menu 265

Fonts folder 216
For command 105, 219
formatting button text 48
Free property

Process object 271
Volume object 302

free space 302
front

process 271
window 306

Front property/message
Palette object 271
Window object 306

functions 128
defined 93

G
Gestalt function 220
GetDragAndDrop function 131, 221
GetResources function 225
Global keyword

Click command 172
SelectPopUp command 290
Variable command 300

global palettes 30
importing 41

global variables 96, 97, 300
grid 36
Grow message 257
growing palettes 257
4 ■

ONECLICK AUTHORING GUIDE ■ INDEX
H
handlers 118
height

buttons 47, 161
list items in Button Library 26
palettes 35, 258
screens 284
windows 307

Height property
Button object 161
Palette object 258
Screen object 284
Window object 307

help
Balloon Help message 162
editing in Button Editor 51
editing in Button Library 26
keyword help 68
keyword list 67
printing 69

Help property 162
hiding

buttons 54
palettes in the OneClick menu 37

highlighting buttons 54
hot keys

See also shortcuts
Hour property 184

I
Icon Editor

draw color 80
drawing tools 80
dropper tool 81
erase color 80
eraser tool 81
fill tool 81
introduced 79
line tool 81
pencil tool 80
reverting icons 84

saving icons 84
selection tool 81
shape tools 81

Icon property 162
Icon Search

copying icons to buttons 86
creating buttons 86
introduced 84

IconAlign property 163
icons

aligning 54, 163
button 162
choosing in Button Editor 51
copying and pasting 82
copying from Icon Search 86
designing color and black-and-white 82
drawing shapes 81
filling pixels 81
Finder icons, See Drag and Drop
mask 83
resizing 81
restoring original 84
saving 84
searching files for 84
transparency 83

If command 102, 228
image 34
importing

libraries 26
palettes 41

importing palettes 259
index variable 106
input

retrieving from users 125
retrieving in a dialog box 156

inserting parameters 70
Insufficient memory (error message) 78
Invalid variable name (error message) 77
IsKeyDown system variable 230
IsMouseDown system variable 230
iteration

For loop 219
Repeat loop 277
■ 335

ONECLICK AUTHORING GUIDE ■ INDEX

33
While loop 304

K
keyboard shortcuts, assigning to buttons 49
keys

Command key 177
Control key 179
determining if pressed 230
Option key 255
Shift key 292

KeyShortCut property 163
keyword list 67
keyword, defined 90
Kind property

File object 202
Process object 272
Window object 307

L
label. See button text
launch buttons 133
launching

files and applications 253
Left keyword 286
Left property

Button object 164
Palette object 258
Screen object 284
Window object 308

Length function 232
length of text 232
libraries

creating 24
deleting 27
naming 27
opening from files 26

limits 143
Line too long (error message) 77
lines

drawing buttons as 47
drawing in icons 81

List property

Button object 164
DialogButton object 189
File object 203
Menu object 242
Palette object 259
Process object 272
Volume object 302
Window object 309

ListCount function 232
ListDelimiter system variable 121, 122, 234
ListItems function 121, 236
lists

counting items 121, 232, 251
defined 91
delimiter character 234
displaying in dialog boxes 154
in a pop-up menu 124, 265
manipulating 120
multi-dimensional 122
retrieving button list 164
retrieving file and folder list 203
retrieving items in a list 121, 236, 251
retrieving menu items 242
retrieving menus 242
retrieving palette list 259
retrieving process list 272
retrieving resource list 225
retrieving volume list 302
retrieving window list 309
script keywords 67
sorting 237
summing 237

ListSort function 237
ListSum function 237
local variables 96, 300
location

buttons 164
palettes 259
windows 309

Location property
Button object 164
Palette object 259
Window object 309
6 ■

ONECLICK AUTHORING GUIDE ■ INDEX
logical operators 101
looping 105

defined 102
For loop 219
Repeat loop 105, 277
While loop 106, 304

Lower function 238
lowercase 238

M
macros (QuicKeys) 276
MakeNumber function 238
MakeText function 239
manipulating lists 120
margin 36
mask 83
math operators 99
memory 78

allocation size 274
determining free bytes 271
out of memory error 196
usage 144

menu equivalents 298
menu items

counting 241
determing checked status 120
determining checked status 241
determining enabled status 241
determining existence 242
name 243
retrieving menu item list 242
selecting 288
selecting from pop-up menus 290
updating 243

Menu object 120, 240–244
menus

creating pop-up menus 124, 265
determining enabled status 241
determining existence 242
name 243, 288
retrieving menu list 242
searching 288

updating 243
Message command 139, 244
messages 114, 115, 117

defined 112
Script Editor error messages 76

Minute property 184
Missing ‘"’ (error message) 77
Missing ‘(’ or Missing ‘)’ (error message) 77
mode (of buttons) 165
Mode property 165
modem 186
modifier keys

Command key 177
Control key 179
Option key 255
Shift key 292

monitors
colors 283
counting 283
determining bit depth 284
determining existence 284
setting bit depth 284

Month property 184
mouse

determining how long pressed 135
determining if pressed 230

mouse coordinates 71
MouseDown handler 135, 249
MouseUp handler 249
moving

buttons 164, 170
buttons between palettes 55
buttons on palettes 48
files 215
palettes 256, 258, 259, 262
windows 308, 309, 310

N
name

buttons 165
menu items 243
menus 243
■ 337

ONECLICK AUTHORING GUIDE ■ INDEX

33
processes 272
variable 94
volumes 302

Name property
Button object 165
Menu object 243
Palette object 259
Process object 272
Volume object 302

naming
buttons 52
libraries 27
palettes 32

nested scripts 143
New message

Button object 165
Palette object 259

NewFolder message
folders

creating 205
Next

Next For command 219
Next Repeat command 277
Next While command 304

nudging buttons 48
numbers

adding a list 237
converting from text 238
converting to text 239
defined 90
generating random 277

O
objects 114, 115, 117

defined 109
messages 112
properties 111
specifiers 111

OldListCount function 251
OldListItems function 251
OneClick Editor

opening 18

quick tour 19
OneClick menu

as a pop-up menu from a button 263
preventing palettes from appearing in 37

Open command 253
opening

libraries from files 26
new libraries 24
OneClick Editor window 18
palettes from files 41
picture or pattern (in palettes) 34

opening Finder items 253
operators

arithmetic 99
defined 99
logical 101
parentheses 101
precedence 102
relational 100
string 101

Option keyword
Click command 172
SelectButton command 287
Type command 298

OptionKey system variable 255
options

Button Editor defaults 54
Palette Editor defaults 38

ordering buttons in libraries 26
oval tool 81

P
Page keyword 286
paint bucket tool 81
Palette Editor

background color 32
background pattern 32
changing defaults 38
choosing custom color 33
deleting palettes 38
deleting patterns 35
deleting pictures 35
8 ■

ONECLICK AUTHORING GUIDE ■ INDEX
duplicating palettes 42
exporting palettes to files 40
importing palettes from files 41
importing pictures or patterns 34
introduced 29
renaming palettes 32
shortcuts 29
toggling palette title bar 37

Palette object 256–263
PaletteDrop button 133
PaletteMenu command 263
palettes

adding buttons 46
adding buttons in Icon Search 86
as pop-up palettes 127, 267
background color 32
background pattern 32
background picture 34
button spacing 36
color 256
copying 42
copying buttons to or from 55
creating 30, 259
default settings 38
deleting 38, 256
deleting buttons from 55
desktop pattern 34
determining existence 257
dragging 256
exporting to files 40
height 258
hiding in the OneClick menu 37
importing from files 41
margin 36
moving buttons to or from 55
naming 32
opening from files 41
position 258, 259, 262
renaming 259
resizing 35, 257
restoring deleted buttons 56
retrieving palette list 259
selecting 31

size 258, 261, 263
title bar on/off 261
toggling title bar on/off 37
width 263

parameters
defined 92
inserting 70
invalid parameter error 196

parentheses 101
pasting icons 82
paths 73, 121
patterns

deleting from palettes 35
importing into palettes 34
palette background 32

Pause command 107, 263
pausing

for a period of time 107, 263
until an expression becomes true 107, 303

pencil tool 80
pictures

deleting from palettes 35
importing into palettes 34

pie graph 194
pixel editing 80, 81
playing sounds 292
pop-up menus

creating 124, 265
of characters 265
of files and folders 264
selecting items 290

pop-up palettes 127
PopupFiles function 264
PopupFont function 265
PopupMenu function 124, 265
PopupPalette command 127, 267
position

button text 169
buttons 164, 170
icon on buttons 54
icons 163
palettes 258, 259, 262
text on buttons 54
■ 339

ONECLICK AUTHORING GUIDE ■ INDEX

34
windows 308, 309, 310
precedence, operator 102
Preferences folder 216
pressing command keys 298
printing

help 69
scripts 67

PrintMonitor Documents folder 216
Process object 269–275
processes

activating 271
counting 270
determining creator code 270
determining existence 270
determining file type 272
determining folder 271
determining free memory 271
determining front process 271
determining visibility of 274
hiding 274
name 272
quitting 272
retrieving process list 272
showing 274

progress indicators 194
proper case 275
Proper function 275
properties 114, 115, 117

accessing multiple 112, 312
Button object 158–170
DateTime object 181–186
defined 109
DialogButton object 187–189
File object 199–206
Menu object 240–244
Palette object 256–263
Process object 269–275
retrieving 111
Screen object 283–286
setting 111
Volume object 301–??
Window object 305–??

pseudo menu names 288

Q
QuicKey command 276
Quit message 272
quitting applications/processes 272

R
Random function 277
recording scripts 59
records (as lists) 122
rectangle tool 81
recursion 143
refreshing

buttons 170
menus 243
screens 286
windows 310

relational operators 100
renaming

buttons 52
libraries 27
palettes 32, 259

Repeat command 105, 277
repeating statements 105, 106, 219, 277, 304
Replace function 278
replacing text 278
resizing

buttons 47
icons 81
palettes 35

resizing palettes 257
resources 131

retrieving resource list 225
restoring

changed icons 84
deleted buttons 56

result variable 157
retrieving object properties 111
Return function 278
reverting scripts 66
Right keyword 286
running
0 ■

ONECLICK AUTHORING GUIDE ■ INDEX
AppleScript scripts 150
buttons as subroutines 171
QuicKeys shortcuts 276
scheduled scripts 279, 281
scripts at startup 294

running at startup 136
run-time errors 142

S
saving

icons 84
palettes in files 40

saving scripts 65
Schedule command 136, 279
Scheduled handler 136, 281
scheduling scripts 136, 281
Screen object 283–286
screens

colors 283
counting 283
determining bit depth 284
determining existence 284
height 284
setting bit depth 284
size 284, 286
updating 286
width 286

Script Editor 57
accessing 58
compiling 64
detailed help 68
diagram 58
error messages 64, 76
inserting parameters 70
keyword list 67
printing help 69
printing scripts 67
recording 59
running scripts 66
saving changes 65
script formatting 64
shortcuts 63

Script property 167
scripting techniques 119
scripts

AppleScript scripts 150
as functions 128
as subroutines 128
assigning to buttons 167
compiling 64
copying 167
copying from buttons in libraries 22
formatting 64
nesting 143
printing 67
recursion 143
retrieving 167
reverting 66
running 66

scripts at startup 136
running periodically 136
saving 65
scheduling 281
special characters in 167
testing and debugging 139

scroll bars 286
Scroll command 286
searching

for buttons in Button Library 23
for icons in files 84

searching text 212
replacing search text 278

Second property 184
SelectButton command 287
selecting

buttons to edit 46
icons to edit 79
menu items 288
palettes to edit 31
pixels in icons 81
pop-up menu items 290

selection
retrieving 273
setting 273

Selection property 273
■ 341

ONECLICK AUTHORING GUIDE ■ INDEX

34
selection tool 81
SelectMenu command 288
SelectPopUp command 290
Set command 290
setting

object properties 111
variable values 290

settings. See options
shape tools 81
Shift keyword

Click command 172
SelectButton command 287
Type command 298

ShiftKey system variable 292
shortcuts

assigning to buttons 49
Button Editor 46
Palette Editor 29
removing from buttons 49
Script Editor 63

shortcuts (QuicKeys) 276
Shutdown Items folder 216
size

button text 170
buttons 47, 161, 168, 170
icons 81
lists 232, 251
of memory partition 274
palettes 35, 258, 261, 263
screens 284, 286
text 232
volumes 302
windows 307, 309, 311

Size property
Button object 168
Palette object 261
Process object 274
Volume object 302
Window object 309

sorting lists 237
sound

alert sound 157
alert sound volume 158

volume 293
Sound command 292
sound parameter 74
SoundLevel system variable 293
sounds 131, 142

playing 292
spaces

trimming from text 297
spacing buttons on palettes 36
Speak command 293
speaking text 293
specifications 143
specifier

defined 111
speech 293
square tool 81
Startup handler 136, 294
Startup Items folder 216
startup scripts 136, 294
statement, defined 90
Static keyword 300
static variables 98, 300

for Clipboard storage 126
stopping script execution 109
string

operator 101
strings

defined 90
See also text

styles, button text 170
sublists 236, 251
subroutines 128, 171
SubString function 294
summation of list items 237
System Folder 216

finding 295
system variables 98
SystemFolder system variable 295

T
tab character 295
Tab function 295
2 ■

ONECLICK AUTHORING GUIDE ■ INDEX
tear-off palette 127
techniques 119
testing 139
text

aligning 54, 169
button text 168
changing to lowercase 238
changing to proper case 275
changing to uppercase 299
clippings 132
colors 169
converting from numbers 239
converting to numbers 238
dragging from buttons 192
finding and replacing 278
font 169
on buttons 48
operator 101
reading from files 205
retrieving substring 294
searching 212
See also strings
size 170, 232
speaking 293
styles 170
trimming spaces 297
typing 298
writing to files 205

Text property
Button object 168
File object 205

TextAlign property 169
TextColor property 169
TextFont property 169
TextSize property 170
TextStyle property 170
thermometer 194
Ticks system variable 135, 296
time

interval in ticks 296
parameter 75

TimeSerial property 184
TimeString property 185

title bar
changing name in 32
toggling on/off 37

TitleBar property
Palette object 261
Window object 310

tools
dropper tool 81
eraser tool 81
fill tool 81
line tool 81
pencil tool 80
selection tool 81
shape tools 81

Top property
Button object 170
Palette object 262
Screen object 285
Window object 310

transparent
buttons 53
icons 83

Trash folder 216
Trim function 297
Type command 298
typing text and commands 298

U
Uncheck keyword

SelectButton command 287
SelectMenu command 288

Unexpected “End” (error message) 77
Unknown name (error message) 76
Unknown version of script (error message) 78
Unmount message 303
unmounting volumes 303
Up keyword 286
Update message

Button object 170
Menu object 243
Screen object 286
Window object 310
■ 343

ONECLICK AUTHORING GUIDE ■ INDEX

34
updating
buttons 170, 193
menus 243
screens 286
windows 310

Upper function 299
uppercase 299

V
Valid END specifier required (error message) 77
values

assigning to variables 95
defined 90
lists 91
maximum sizes of 143
monitoring 141
numbers 90
strings 90

Variable command 300
variables

accessing from AppleScript 324
AppleScript result 157
assigning values to 95
declaring 300
defined 94
global 96, 97
index 106
local 96
maximum sizes of 143
monitoring values 141
naming rules 94
naming tips 97
setting values 290
static 98
system 98

viewing scripts 58
visibility

buttons 170
processes 274
windows 310

visibility of buttons 54
Visible property

Button object 170
Process object 274
Window object 310

voice 293
volume

alert sound 158
sound 293

Volume object 301–??
volumes

counting 301
determining existence 301
determining free space 302
ejecting 301
name 302
retrieving volume list 302
size 302
unmounting 303

W
Wait command 107, 303
waiting

for a period of time 263
until an expression becomes true 107, 303

Weekday property 186
While command 106, 304
width

buttons 47, 170
palettes 35, 263
screens 286
windows 311

Width property
Button object 170
Palette object 263
Screen object 286
Window object 311

Window object 305–??
window parameter 75
windows

activating 306
closing 176
counting 306
determining existence 306
4 ■

ONECLICK AUTHORING GUIDE ■ INDEX
determining front window 306
determining kind 307
determining visibility 310
height 307
position 308, 309, 310
retrieving window list 309
size 307, 309, 311
title bar height 310
updating 310
width 311
zooming 311

With command 312
word wrap 62

Y
Year property 186

Z
Zoom property 311
zooming windows 311
■ 345

ONECLICK AUTHORING GUIDE ■ INDEX

34
6 ■

	Introduction
	About this manual
	Why script?
	Opening the OneClick Editor
	A quick tour of the OneClick Editor

	Using the Button Library
	Choosing a library of buttons
	Copying buttons and scripts from the library to a ...
	Searching for specific buttons
	Creating a library and adding buttons
	Managing library files

	Using the Palette Editor
	Creating a new palette
	Selecting a palette to edit
	Changing a palette’s name
	Changing a palette’s background
	Changing a palette’s size
	Changing a palette’s grid settings and button spac...
	Turning a palette’s title bar on or off
	Keeping a palette from appearing in the OneClick m...
	Changing the default settings for new palettes
	Deleting a palette
	Managing palette files

	Using the Button Editor
	Creating a new button
	Selecting buttons to edit
	Resizing selected buttons
	Moving and aligning buttons
	Editing and formatting a button’s text label
	Adding a keyboard shortcut
	Adding a Balloon Help message
	Choosing which icon appears on a button
	Changing a button’s name
	Changing other visual properties of buttons
	Changing the default settings for new buttons
	Duplicating buttons
	Deleting buttons from a palette

	Using the Script Editor
	About the Script Editor
	Accessing the Script Editor
	Recording a script
	Tips for recording a script

	Typing and editing in the script pane
	Jumping directly to a line in a script
	Checking a script for errors
	Saving changes to a script
	Reverting to the last saved script

	Running a script
	Printing scripts
	Getting help for script keywords
	Using the Keyword List
	Using Detailed Help

	Inserting parameters for script keywords
	Button
	Click
	Cursor
	Date
	File
	File Type
	Sound
	Time
	Window

	Script compiler error messages

	Using the Icon Editor and Icon Search
	Icon Editor tools
	Resizing the icon
	Pasting an icon or picture from the clipboard
	Designing both color and black-and-white icons
	Making parts of the icon transparent
	Saving changes to an icon
	Using Icon Search

	Using EasyScript
	Overview
	About scripting
	How scripting differs from programming

	Parts of the EasyScript language
	Statements and keywords
	Values
	Commands
	Functions
	Comments
	Variables
	Expressions and operators
	Control statements (branching and looping)
	Objects
	Handlers

	Common scripting techniques
	Finding the checked item in a menu
	Manipulating lists
	Creating pop-up menu buttons
	Getting input while a script runs
	Accessing the Clipboard
	Creating tear-off palettes
	Calling scripts as subroutines
	Calling scripts as functions
	Getting a list of the installed fonts or sounds
	Using Drag and Drop
	Determining how long the mouse is held down
	Making a script run when an application starts
	Scheduling a script to run periodically

	Testing and debugging a script
	Using message boxes to inspect variables
	Using text buttons to monitor the values of variab...
	Using sounds to determine what’s being executed
	Checking for run-time errors

	Specifications and limits
	Memory usage

	EasyScript Reference
	Using the EasyScript Reference
	What’s new in OneClick 2.0
	Absolute function
	Alias function
	AppleScript command
	AskButton function
	AskFile function
	AskKey function
	AskList function
	AskNewFile function
	AskShortcut function
	AskText function
	ASResult system variable
	Beep command
	BeepLevel system variable
	Button object
	.Border
	.Color
	.Count
	.Data
	.Delete
	.Drag
	.Exists
	.Height
	.Help
	.Icon
	.IconAlign
	.Index
	.KeyShortCut
	.Left
	.List
	.Location
	.Mode
	.Name
	.New
	.Record
	.Script
	.Size
	.Text
	.TextAlign
	.TextColor
	.TextFont
	.TextSize
	.TextStyle
	.Top
	.Update
	.Visible
	.Width

	Call command
	CallResult system variable
	Char function
	Click command
	Clipboard system variable
	CloseResFile command
	CloseWindow command
	Code function
	ColorPicker function
	CommandKey system variable
	ContextualMenu handler
	ControlKey system variable
	ConvertClip command
	Cursor system variable
	DateTime object
	.DateSerial
	.DateString
	.Day
	.Hour
	.Minute
	.Month
	.Second
	.TimeSerial
	.TimeString
	.Weekday
	.Year

	Dial command
	DialogButton object
	.Count
	.Checked
	.Enabled
	.Exists
	.Index
	.List
	.Name

	Dialogs system variable
	DialogText system variable
	Directory system variable
	DragAndDrop handler
	DragButton command
	DrawButton handler
	DrawIndicator command
	Editor command
	EditorFont system variable
	EditorSize system variable
	Error system variable
	Exit command
	False system variable
	File object
	.Append
	.Busy
	.Count
	.CreationDate
	.Creator
	.Delete
	.Exists
	.FileVersion
	.Kind
	.KindString
	.List
	.Locked
	.ModificationDate
	.Name
	.NewFolder
	.Original
	.Size
	.Text
	.Visible

	FileClose command
	FileGetEOF function
	FileGetPos function
	FileOpen function
	FileRead function
	FileSetEOF command
	FileSetPos command
	FileWrite command
	Find function
	FindApp function
	FinderAlias command
	FinderCopy command
	FinderMove command
	FindFolder function
	FKey command
	FontMenu function
	For, Next For, Exit For, End For commands
	Gestalt function
	GetDragAndDrop function
	GetICHelpers function
	GetICPref function
	GetPalettes function
	GetResources function
	GetScrap function
	GetWindowText command
	If, Else, Else If, End If commands
	IgnoreClicks system variable
	Implemented function
	IsKeyDown system variable
	IsMouseDown system variable
	KeyPress command
	LaunchURL command
	Length function
	ListCount function
	ListDelete function
	ListDelimiter system variable
	ListFind function
	ListInsert function
	ListItems function
	ListSort function
	ListSum function
	LoadExtensions command
	Lower function
	MakeNumber function
	MakeText function
	Menu object
	.Count
	.Checked
	.Enabled
	.Exists
	.Height
	.Index
	.List
	.Name
	.Update

	MenuNumber function
	Message command
	MountVolume command
	MountVolumeIP command
	MouseDown handler
	MouseUp handler
	Notify command
	OldDate function
	OldDateString function
	OldListCount function
	OldListItems function
	OldTime function
	OldTimeString function
	OnlineHelp handler
	Open command
	OpenFileList function
	OpenResFile function
	OptionKey system variable
	Palette object
	.Color
	.Count
	.Delete
	.Drag
	.Exists
	.Front
	.Grow
	.Height
	.Index
	.InMenu
	.IsGlobal
	.Left
	.List
	.Location
	.MainScreen
	.Name
	.New
	.PICT
	.Size
	.TitleBar
	.Top
	.Update
	.Visible
	.Width

	PaletteMenu command
	Pause command
	PopupFiles function
	PopupFont function
	PopupMenu function
	PopupMenuFont system variable
	PopupMenuSize system variable
	PopupPalette command
	PrintText command
	Process object
	.Count
	.Creator
	.Exists
	.Folder
	.Free
	.Front
	.Index
	.Kind
	.List
	.Name
	.Quit
	.Selection
	.SendAE
	.Size
	.Visible
	.Window

	Proper function
	QuicKey command
	QuoteText function
	Random function
	Repeat, Next Repeat, Exit Repeat, End Repeat comma...
	Replace function
	Return function
	Schedule command
	Scheduled handler
	ScheduleType system variable
	Screen object
	.Color
	.Count
	.CursorScreen
	.CursorX
	.CursorY
	.Depth
	.Exists
	.Height
	.Left
	.Maximum
	.Top
	.Update
	.Width

	ScriptInterrupts system variable
	Scroll command
	SelectButton command
	SelectMenu command
	SelectPopUp command
	Set command
	SetICPref command
	SetScrap command
	ShiftKey system variable
	Sound command
	SoundLevel system variable
	Speak command
	Startup handler
	SubString function
	SystemFolder system variable
	SysVersion system variable
	Tab function
	TextWidth function
	Ticks system variable
	Trim function
	True system variable
	TruncText function
	Type command
	Upper function
	UserHandler1 … UserHandler5 handlers
	Variable command
	Version system variable
	Volume object
	.Count
	.Eject
	.Exists
	.Free
	.Index
	.List
	.Name
	.Size
	.Unmount

	Wait command
	WeekdayGregorian function
	While, Next While, Exit While, End While commands
	Window object
	.Collapsed
	.Count
	.Exists
	.Front
	.Height
	.Index
	.Kind
	.Left
	.List
	.Location
	.Name
	.Size
	.TitleBar
	.Top
	.Update
	.Visible
	.Width
	.Zoom

	With command

	EasyScript Summary
	Integration with AppleScript
	Why use AppleScript?
	Integrating OneClick and AppleScript
	Launching compiled AppleScript scripts
	Embedding AppleScript code in an EasyScript script...
	Accessing the AppleScript result variable
	Accessing OneClick variables from an AppleScript s...
	Calling a OneClick script from an AppleScript scri...
	Determining if AppleScript is installed

	AppleScript resources

